UNIT – 1

MATRICES AND DETERMINANTS

Unit Outlines

- **1.1 Introduction to Matrices**
- **1.2 Types of Matrices**
- **1.3 Addition and Subtraction of Matrices**
- **1.4 Multiplication of Matrices**
- **1.5 Multiplicative inverse of a Matrix**
- **1.6 Solution of Simultaneous Linear Equations.**

After studying this unit the students will be able to:

- A matrix with real entries and relate its rectangular layout (Formation) with real life.
- Rows and columns of a matrix. The order of a matrix.
- Equality of two matrices.
- Define and identify row matrix, column matrix, rectangular matrix, square matrix, zero/null matrix, identity matrix, scalar matrix, diagonal matrix, transpose of a matrix, symmetric and skew-symmetric matrices.
- Know whether the given matrices are conformable for addition/subtraction.
- Add and subtract matrices.
- Multiply a matrix by a real number.
- Verify commutative and associative laws under addition.
- Define additive identity of a matrix.
- Known whether the given matrices are conformable for multiplication.
- Multiply two (or three) matrices.
- Verify associative law under multiplication.
- Verify distributive laws.
- Show with the help of an example that commutative law under multiplication does not hold in general (i.e., AB \neq BA).
- Define multiplicative identity of a matrix.
- Verify the result $(AB)^t = B^t A^t$.
- Define the Determinant of a square matrix.
- Evaluate determinant of a matrix.
- Define singular and non-singular matrices.
- Define adjoint of a matrix.
- Find multiplicative inverse of a nonsingular matrix A and verify that
- $AA^{-1} = I = A^{-1} A$ where I is the identity matrix.
- Use adjoint method to calculate inverse of a non-singular matrix.
- Verify the result $(AB)^{-1} = B^{-1} A^{-1}$
- Solve a system of two linear equations and related real life problems in two unknowns using
- Matrix inversion method,
- Cramer's rule.

Introduction of Matrix:

The idea of Matrix was given by **"Arthur Cayley"**, an English mathematician of **19th century**. Who first developed **"Theory of Matrices" in 1858**.

Matrix:

A rectangular array or a formation of collection of real numbers, say 0, 1, 2, 3, 4 and 9, such as; 1 3 4 $\begin{pmatrix} 9 & 2 \\ 0 & 2 \end{pmatrix}$ and then enclosed by brackets [] is said to form a matrix $\begin{bmatrix} 1 & 3 & 4 \end{bmatrix}$

$$
\begin{bmatrix} 1 & 5 & 1 \\ 9 & 2 & 0 \end{bmatrix}
$$

Matrix Name:

Matrices are denoted conventionally by capital letters A, B, C… X, Y, Z etc of English Alphabets.

Row of a matrix:

In matrix, the entries presented in **horizontal** way are called rows.

$$
A = \begin{bmatrix} a & b & c \\ \ell & m & b \end{bmatrix} \xrightarrow{R_1} R_2
$$

In above matrix A, R_1 and R_2 are two rows. **Columns of a matrix:**

In matrix, the entries presented in **vertical** way are called columns.

$$
A = \begin{bmatrix} 1 & 4 \\ 3 & 9 \end{bmatrix}
$$

$$
\begin{matrix} \downarrow & \downarrow \\ C_1 & C_2 \end{matrix}
$$

In above matrix A, C_1 and C_2 are two columns. **Order of a Matrix:**

The number of rows and columns in a matrix specifies its order.

The order of a matrix is denoted by $m \times n$ or m-by-n.

Here; "m" represented the number of rows and "n" represented the number of columns.

$$
\begin{array}{c}\nm - by - n \\
\downarrow\n\end{array}
$$

No. of rows No. of columns

If a matrix C has two rows and 3 columns. The order of matrix is 2-by-3.

$$
C = \begin{bmatrix} 1 & 3 & 4 \\ 9 & 2 & 0 \end{bmatrix} \rightarrow R_1
$$

\n
$$
\downarrow \qquad \downarrow \qquad \downarrow
$$

\n
$$
C_1 \qquad C_2 \qquad C_3
$$

The order of matrix C is 2-by-3.

Equal Matrices:

Let A and B be two matrices; if

- (i) The order of $A =$ the order of B
- (ii) Their corresponding entries are equal or same Then A and B are Equal matrices Equal matrices are denoted by $A = B$ $A = \begin{bmatrix} \end{bmatrix}$ \rfloor 2 4] $\begin{bmatrix} 9 & 3 \end{bmatrix}$ B = $\overline{}$ 2 $2+2$
0-1 1+1+1 $10-1$ $1+1+1$

Matrix A and B are equal because they have same order which is 2-by-2 and same corresponding elements so, $A = B$.

Q.1: Find the order of the following matrices.
\n
$$
A = \begin{bmatrix} 2 & 3 \\ -5 & 6 \end{bmatrix}, \qquad B = \begin{bmatrix} 2 & 0 \\ 3 & 5 \end{bmatrix},
$$
\n
$$
C = \begin{bmatrix} 2 & 4 \end{bmatrix}, \qquad D = \begin{bmatrix} 4 \\ 0 \\ 6 \end{bmatrix},
$$
\n
$$
E = \begin{bmatrix} a & d \\ b & e \\ c & f \end{bmatrix}, \qquad F = \begin{bmatrix} 2 \end{bmatrix}
$$

$$
G = \begin{bmatrix} 2 & 3 & 0 \\ 1 & 2 & 3 \\ 2 & 4 & 5 \end{bmatrix}, H = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 0 & 6 \end{bmatrix}
$$

\n
$$
A = \begin{bmatrix} 2 & 3 \\ -5 & 6 \end{bmatrix}
$$

\n**Sol.** $A = \begin{bmatrix} 2 & 3 \\ -5 & 6 \end{bmatrix}$
\n**order of matrix** = 2-by-2
\n
$$
B = \begin{bmatrix} 2 & 0 \\ 3 & 5 \end{bmatrix}
$$

\n**Sol.** $B = \begin{bmatrix} 2 & 0 \\ 3 & 5 \end{bmatrix}$
\norder of matrix = 2-by-2
\n
$$
C = \begin{bmatrix} 2 & 4 \end{bmatrix}
$$

\n**Sol.** $C = \begin{bmatrix} 2 & 4 \end{bmatrix}$
\n**order of matrix** = 1-by-2
\n
$$
D = \begin{bmatrix} 4 \\ 0 \\ 6 \end{bmatrix}
$$

\n**Sol.** $D = \begin{bmatrix} 4 \\ 0 \\ 6 \end{bmatrix}$
\n**order of matrix** = 3-by-1
\n
$$
E = \begin{bmatrix} a & d \\ b & e \\ c & f \end{bmatrix}
$$

\n**Sol.** $E = \begin{bmatrix} a & d \\ b & e \\ c & f \end{bmatrix}$
\n**Order of matrix** = 1 - by -1.
\n
$$
G = \begin{bmatrix} 2 & 3 & 0 \\ 1 & 2 & 3 \\ 2 & 4 & 5 \end{bmatrix}
$$

\n**Sol.** $G = \begin{bmatrix} 2 & 3 & 0 \\ 1 & 2 & 3 \\ 2 & 4 & 5 \end{bmatrix}$
\n**Order of matrix** = 3 - by -3.
\n
$$
H = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 0 & 6 \end{bmatrix}
$$

\n**Sol.** $H = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 0 & 6 \end{bmatrix}$
\n**Sol.** $H = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 0 & 6 \end{bmatrix}$

Q.2: Which of the following matrices are equal. $\mathbf{A} = \begin{bmatrix} 3 \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} 3 & 5 \end{bmatrix}, \quad \mathbf{C} = \begin{bmatrix} 5 & -2 \end{bmatrix},$

A = [3], B = [3 3], C = [3 -2
D = [5 3], E =
$$
\begin{bmatrix} 4 & 0 \\ 6 & 2 \end{bmatrix}
$$
,
F = $\begin{bmatrix} 2 \\ 6 \end{bmatrix}$ G = $\begin{bmatrix} 3-1 \\ 3+3 \end{bmatrix}$,
H = $\begin{bmatrix} 4 & 0 \\ 6 & 2 \end{bmatrix}$, I = [3 3+2]
J = $\begin{bmatrix} 2+2 & 2-2 \\ 2+4 & 2+0 \end{bmatrix}$,

- **Sol.** Since order of A and C same and corresponding elements are also same so
	- $A = C$ $A = [3]$ **A** = **C** $B = \begin{bmatrix} 3 & 5 \end{bmatrix}$ **B = I** $C = [5 -2]$ $C = A$ $D = \begin{bmatrix} 5 & 3 \end{bmatrix}$ **Not equal to any matrix** $E = \begin{bmatrix} \end{bmatrix}$ $\overline{2}$ $\begin{bmatrix} 0 \\ 2 \end{bmatrix}$ $E = J = H$ $F = \begin{bmatrix} \end{bmatrix}$ 」 $2\rceil$ 6 $F = G$ $G = \begin{bmatrix} \end{bmatrix}$ $\begin{bmatrix} 3 & -1 \\ 3 & +3 \end{bmatrix}$ $\begin{bmatrix} 3-1 \\ 3+3 \end{bmatrix} = \begin{bmatrix} 1 \end{bmatrix}$ \rfloor $2\rceil$ 6 $G = F$ H = ┙ 4 0 $\begin{bmatrix} 6 & 2 \end{bmatrix}$ **H** = **J** = **E** $I = [3 \ 3+2] = [3 \ 5]$ $I = B$ $J = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ $\begin{bmatrix} 2+2 & 2-2 \\ 2+4 & 2+0 \end{bmatrix}$ $\begin{bmatrix} 2+2 & 2-2 \\ 2+4 & 2+0 \end{bmatrix} = \begin{bmatrix} 2 \end{bmatrix}$ 」 4 0 $J = H = E$
- **Q.3: Find the values of a, b, c and d which satisfy the matrix equation.**

Sol.
$$
\begin{bmatrix} a+c & a+2b \\ c-1 & 4d-6 \end{bmatrix} = \begin{bmatrix} 0 & -7 \\ 3 & 2d \end{bmatrix}
$$

\n**Sol.** $\begin{bmatrix} a+c & a+2b \\ c-1 & 4d-6 \end{bmatrix} = \begin{bmatrix} 0 & -7 \\ 3 & 2d \end{bmatrix}$
\nAccording to the definition of equal matrices.
\n $a+c=0$ (i)
\n $c-1=3$ (ii)
\n $4d-6=2d$ (iv)
\nBy using the(ii) Put c=4 in (i) equation
\nequation
\nc-1=3
\nc=3+1
\nc=4
\n $a=0-4$
\n $a=-4$
\n $a=-4$

Put the value of a = -4	By using (iv) equation
in (iii) equation	$4d - 6 = 2d$
$a + 2b = -7$	$4d - 2d = 6$
$2b = -7 + 4$	$2d = 6$
$2b = -3$	$d = \frac{6}{2}$
$b = -\frac{3}{2}$ or - 1.5	$d = 3$
Hence the value of	$a = -4, b = -1.5, c = 4, d = 3$
TVPES OF MATRICES	
(i) Row Matrix:	
A matrix is called a row matrix if it has only one row.	
$e.g. D = [1 \ 3 \ 4]$	D is a row matrix and its order is 1-by-3.
(ii) Column Matrix:	
A matrix is called a column matrix if it has only one column	
$e.g: E = \begin{bmatrix} 1 \\ 3 \\ 4 \\ 7 \end{bmatrix}$	
E is a column matrix and its order is 4-by-1.	
(iii) Rectangular Matrix:	
A matrix A is called rectangular if, its number of rows is not equal to the number of its columns.	
$e.g: A = \begin{bmatrix} 1 & 7 \\ 2 & 4 \\ 3 & 9 \end{bmatrix}$	$B = \begin{bmatrix} a & b & c \\ d & c & f \end{bmatrix}$
Order of A = 3-by-2	
Order of B 2-by-3	
(iv) Square Matrix:	
A matrix is called a square matrix if its matrix is called a square matrix if its	

number of rows is equal to its number of columns.

e.g; C = [9] D =
$$
\begin{bmatrix} 2 & 4 \\ 9 & 7 \end{bmatrix}
$$
 E = $\begin{bmatrix} 1 & 7 & 0 \\ 3 & 9 & 3 \\ 5 & 11 & 2 \end{bmatrix}$

order 1-by-1 order 2-by-2 order 3-by-3 **(v) Null or Zero Matrix:**

A matrix is called a null or zero matrix if each of its entries/elements are zero (0).

e.g; O =
$$
\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}
$$
, O = [0 0 0], O = $\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$
order 2-by-2 order 1-by-3 order 3-by-1
It is represented by O.

(vi) Transpose of a Matrix:

A matrix obtained by interchanging the row of matrix into the columns of that matrix.

OR

A matrix obtained by changing the columns into rows of a matrix.

If A is a matrix then transpose is denoted by A^t .

e.g;
$$
A = \begin{bmatrix} 0 & 4 \\ 1 & 5 \\ 2 & 7 \end{bmatrix}
$$
 then $A^t = \begin{bmatrix} 0 & 1 & 2 \\ 4 & 5 & 7 \end{bmatrix}$

order = $3-by-2$ then transpose order = $2-by-3$ **(vii) Negative of a Matrix:**

Let A be a matrix. Then its negative is obtained by changing the signs of all the elements of A, i.e.

if A =
$$
\begin{bmatrix} 2 & 9 \\ 4 & -3 \end{bmatrix}
$$
, then $-A = \begin{bmatrix} -2 & -9 \\ -4 & 3 \end{bmatrix}$

(viii) Symmetric Matrix:

A square matrix is symmetric if it is equal to its transpose.

i.e; matrix A is symmetric if $A^t = A$.

$$
A = \begin{bmatrix} a & b \\ b & a \end{bmatrix}, A^t = \begin{bmatrix} a & b \\ b & a \end{bmatrix}
$$

$$
A^t = A
$$

So, A is symmetric matrix.

(ix) Skew-Symmetric Matrix:

A square matrix A is said to be skewsymmetric if $A^t = -A$.

$$
A = \begin{bmatrix} 0 & 2 & 3 \\ -2 & 0 & 1 \\ -3 & -1 & 0 \end{bmatrix}
$$

then
$$
A^{t} = \begin{bmatrix} 0 & -2 & -3 \\ 2 & 0 & -1 \\ 3 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & -2 & -3 \\ -(-2) & 0 & -1 \\ -(-3) & -(-1) & 0 \end{bmatrix}
$$

$$
= -\begin{bmatrix} 0 & 2 & 3 \\ -2 & 0 & 1 \\ -3 & -1 & 0 \end{bmatrix} = -A
$$

Since $A^t = -A$, therefore A is skew-symmetric matrix.

(x) Diagonal Matrix:

A square matrix A is called a diagonal matrix if each element is zero except diagonal elements.

e.g; $A =$ $\overline{0}$ \mathbf{r} Γ1 $\overline{}$ $\overline{0}$ $0 \quad 0^ \overline{2}$ $\overline{0}$

(xi) Scalar Matrix:

A diagonal matrix is called a scalar matrix, if all the diagonal elements are same and non-zero.

$$
A = \begin{bmatrix} k & 0 & 0 \\ 0 & k & 0 \\ 0 & 0 & k \end{bmatrix} \quad k \neq 0, 1 \quad C = \begin{bmatrix} 9 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & 9 \end{bmatrix}
$$

is a scalar matrix of order 3-by-3.

(xii) Identity Matrix:

A diagonal matrix is called identity (unit) matrix if all diagonal elements are 1 and it is denoted by I.

e.g;
$$
I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}
$$
, I=[1]
are all unit matrices,

Remember:

- **Note: (i) The scalar matrix and identity matrix are diagonal matrix.**
	- **(ii) Every diagonal matrix is not a scalar or identity matrix.**

EXERCISE 1.2

Q.1: From the following matrices, identify

unit matrices row matrices, column matrices and null matrices.

$$
A = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} 2 & 3 & 4 \end{bmatrix},
$$

\n
$$
C = \begin{bmatrix} 4 \\ 0 \\ 6 \end{bmatrix}, \quad D = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}
$$

\n
$$
E = \begin{bmatrix} 0 \end{bmatrix}, \quad F = \begin{bmatrix} 5 \\ 6 \\ 7 \end{bmatrix}
$$

\nSol. $A = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ is a null matrix.
\n $B = \begin{bmatrix} 2 & 3 & 4 \end{bmatrix}$ is a row matrix.
\n $C = \begin{bmatrix} 4 \\ 0 \\ 6 \end{bmatrix}$ is a column matrix.
\n $D = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ is a unit matrix.
\n $E = \begin{bmatrix} 0 \end{bmatrix}$ is a null matrix.
\n $F = \begin{bmatrix} 5 \\ 6 \\ 7 \end{bmatrix}$ is a column matrix.

Q.2: From the following matrices identify: (a) Square matrices (b) Rectangular matrices (c) Row matrices (d) Column matrices (d) Identity matrices (f) Null Matrices (i) $\begin{bmatrix} -8 & 2 & 7 \ 12 & 0 & 4 \end{bmatrix}$ $\begin{bmatrix} 0 & 2 & 7 \\ 12 & 0 & 4 \end{bmatrix}$ (ii) **1** $\overline{}$ $\overline{}$ **3** $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ (iii) $\begin{bmatrix} 6 & -4 \\ 3 & -2 \end{bmatrix}$ **3 2 (iv)** 」 **1 0** $\begin{bmatrix} 0 & 1 \end{bmatrix}$ (v) $\overline{}$ \rfloor $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ **3 4 5 6 (vi) [3 10 1] (vii)** $\overline{}$ $\overline{}$ $\begin{array}{c} \hline \end{array}$ **1 0 0 (viii)** $\overline{}$ $\overline{}$ $\overline{}$ $\begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 0 \end{bmatrix}$ **1 2 0 0 0 1 (ix)** $\overline{}$ $\overline{}$ $\overline{}$ **0 0 0 0 0 0 Sol.** (i) $\begin{bmatrix} -8 & 2 & 7 \\ 12 & 0 & 4 \end{bmatrix}$ $\begin{bmatrix} 0 & 2 & 4 \end{bmatrix}$ **Rectangular matrix** (ii) L \mathbf{r} $\overline{}$ ┙ $\overline{}$ $\binom{3}{0}$ 0 **Column matrix, rectangular matrix** 1 (iii) $\overline{}$ $\begin{bmatrix} 6 & -4 \\ 3 & -2 \end{bmatrix}$ $\begin{bmatrix} 3 & -2 \end{bmatrix}$ Square matrix (iv) L 」 $1 \quad 0$] $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ **Identity matrix, square matrix** (v) L \mathbf{r} $\overline{}$ ┙ $\overline{}$ $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ 3 4 **Rectangular matrix** 5 6 (vi) $\begin{bmatrix} 3 & 10 & -1 \end{bmatrix}$ **Row matrix, rectangular matrix** (vii) L L \mathbf{r} \mathbf{r} 」 $\overline{}$ $\begin{bmatrix} 0 \end{bmatrix}$ 1] 0 C**olumn matrix, rectangular matrix** (viii) $\begin{vmatrix} -1 & 2 & 0 \end{vmatrix}$ $0 \quad 0 \quad 1$ $\overline{}$ $1 \quad 2 \quad 3$ L L $\begin{vmatrix} -1 & 2 & 0 \end{vmatrix}$ Square matrix L L (ix) L \mathbf{r} \mathbf{r} $\begin{bmatrix} 0 & 0 \end{bmatrix}$ 」 $\overline{}$ 0 0 **is a null matrix, rectangular matrix** 0 0 **Q.3: From the following matrices. Identify diagonal, scalar and unit (identity) matrices.** $A = \begin{bmatrix} \end{bmatrix}$ $\overline{}$ **4 0** $\begin{bmatrix} 4 & 0 \\ 0 & 4 \end{bmatrix}$, **B** = $\begin{bmatrix} 2 & 0 \ 0 & -1 \end{bmatrix}$ $\begin{bmatrix} 2 & 0 \\ 0 & -1 \end{bmatrix}$, **C** = $\overline{}$ **1 0** $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ **D =** $\overline{}$ **3 0** $\begin{bmatrix} 3 & 0 \ 0 & 0 \end{bmatrix}$, **E** = $\begin{bmatrix} 5-3 & 0 \\ 0 & 1+1 \end{bmatrix}$ **0 1+1 Sol.** A= $\left\lfloor$ 」 4 0 $\begin{bmatrix} 0 & 4 \end{bmatrix}$ Scalar matrix, diagonal matrix

B =
$$
\begin{bmatrix} 2 & 0 \ 0 & -1 \end{bmatrix}
$$
 Diagonal matrix
\nC = $\begin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix}$ Identity matrix, diagonal matrix
\nD = $\begin{bmatrix} 3 & 0 \ 0 & 0 \end{bmatrix}$ Diagonal matrix
\nE = $\begin{bmatrix} 5-3 & 0 \ 0 & 1+1 \end{bmatrix}$ E = $\begin{bmatrix} 2 & 0 \ 0 & 2 \end{bmatrix}$ Scalar matrix,
\ndiagonal matrix
\nQ.4: Find negative of matrices A, B, C, D and
\nE when
\nA = $\begin{bmatrix} 1 \ 0 \ -1 \end{bmatrix}$, B = $\begin{bmatrix} 3 & -1 \ 2 & 1 \end{bmatrix}$, C = $\begin{bmatrix} 2 & 6 \ 3 & 2 \end{bmatrix}$,
\nD = $\begin{bmatrix} -3 & 2 \ -4 & 5 \end{bmatrix}$, E = $\begin{bmatrix} 1 & -5 \ 2 & 3 \end{bmatrix}$
\nA = $\begin{bmatrix} 1 \ 0 \ 0 \end{bmatrix}$ \Rightarrow -A = $\begin{bmatrix} -1 \ 0 \ 1 \end{bmatrix}$
\nB = $\begin{bmatrix} 3 & -1 \ 2 & 1 \end{bmatrix}$
\nSol. A = $\begin{bmatrix} -3 & 1 \ -2 & -1 \end{bmatrix}$
\nC = $\begin{bmatrix} 2 & 6 \ 3 & 2 \end{bmatrix}$
\nSol. -C = $\begin{bmatrix} -2 & -6 \ -3 & -2 \end{bmatrix}$
\nD = $\begin{bmatrix} -3 & 2 \ -4 & 5 \end{bmatrix}$
\nSol. -D = $\begin{bmatrix} 3 & -2 \ 4 & -5 \end{bmatrix}$
\nE = $\begin{bmatrix} 1 & -5 \ 2 & 3 \end{bmatrix}$
\nSol. -E = $\begin{bmatrix} -1 & 5 \ -2 & -3 \end{bmatrix}$
\nQ.5: Find the transpose of each of the following matrices.

$$
A = \begin{bmatrix} 0 \\ 1 \\ -2 \end{bmatrix}, B = \begin{bmatrix} 5 & 1 & -6 \end{bmatrix}, C = \begin{bmatrix} 1 & 2 \\ 2 & -1 \\ 3 & 0 \end{bmatrix},
$$

$$
D = \begin{bmatrix} 2 & 3 \\ 0 & 5 \end{bmatrix}, E = \begin{bmatrix} 2 & 3 \\ -4 & 5 \end{bmatrix}, F = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}
$$

Q.6: Verify that if
$$
A = \begin{bmatrix} 1 & 2 \ 0 & 1 \end{bmatrix}
$$
, $B = \begin{bmatrix} 1 & 1 \ 2 & 0 \end{bmatrix}$
\nthen (i) $(A^t)^t = A$ (ii) $(B^t)^t = B$
\n(ii) $(A^t)^t = A$
\nSol. $A = \begin{bmatrix} 1 & 2 \ 0 & 1 \end{bmatrix}$
\n $A^t = \begin{bmatrix} 1 & 2 \ 0 & 1 \end{bmatrix}$
\n $A^t = \begin{bmatrix} 1 & 0 \ 2 & 1 \end{bmatrix}$
\n $(A^t)^t = \begin{bmatrix} 1 & 0 \ 2 & 1 \end{bmatrix}$
\n $(A^t)^t = \begin{bmatrix} 1 & 2 \ 0 & 1 \end{bmatrix} = A$
\n(ii) $(B^t)^t = B$
\nSol. $B = \begin{bmatrix} 1 & 1 \ 2 & 0 \end{bmatrix}$
\n $B^t = \begin{bmatrix} 1 & 1 \ 2 & 0 \end{bmatrix}$
\n $(B^t) = \begin{bmatrix} 1 & 2 \ 1 & 0 \end{bmatrix}$
\n $(B^t)^t = \begin{bmatrix} 1 & 2 \ 1 & 0 \end{bmatrix}$
\n $(B^t)^t = \begin{bmatrix} 1 & 2 \ 2 & 0 \end{bmatrix} = B$
\nAddition and Subtraction of Matrices:
\n1. Addition of Matrices:

Let A and B be any two matrices with real entries; Matrices A and B are conformable for addition, if they have same order. Addition is denoted by $A + B$ and is obtained by adding the entries of the matrix A to the corresponding entries of B.

$$
A = \begin{bmatrix} 2 & 3 & 0 \\ 5 & 6 & 1 \\ 2 & 1 & 3 \end{bmatrix} \qquad B = \begin{bmatrix} 3 & -2 & 5 \\ -1 & 4 & 1 \\ 4 & 2 & -4 \end{bmatrix}
$$

\n
$$
A + B = \begin{bmatrix} 2 & 3 & 0 \\ 5 & 6 & 1 \\ 2 & 1 & 3 \end{bmatrix} + \begin{bmatrix} 3 & -2 & 5 \\ -1 & 4 & 1 \\ 4 & 2 & -4 \end{bmatrix}
$$

\n
$$
= \begin{bmatrix} 2+3 & 3-2 & 0+5 \\ 5-1 & 6+4 & 1+1 \\ 2+4 & 1+2 & 3-4 \end{bmatrix} = \begin{bmatrix} 5 & 1 & 5 \\ 4 & 10 & 2 \\ 6 & 3 & -1 \end{bmatrix}
$$

Or B+A =
$$
\begin{bmatrix} 3 & -2 & 5 \ -1 & 4 & 1 \ 4 & 2 & -4 \end{bmatrix} + \begin{bmatrix} 2 & 3 & 0 \ 5 & 6 & 1 \ 2 & 1 & 3 \end{bmatrix}
$$

$$
= \begin{bmatrix} 3+2 & -2+3 & 5+0 \ -1+5 & 4+6 & 1+1 \ 4+2 & 2+1 & -4+3 \end{bmatrix} = \begin{bmatrix} 5 & 1 & 5 \ 4 & 10 & 2 \ 6 & 3 & -1 \end{bmatrix}
$$

2. Subtraction of Matrices:

Let A and B any two matrices. Matrices A and B are conformable for subtraction, if they have same order represented by $A -$ B and is obtained by subtracting the entries of the matrix B to the corresponding entries of A.

$$
\mathbf{A} = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 5 & 0 \end{bmatrix} \text{ and } \mathbf{B} = \begin{bmatrix} 0 & 2 & 2 \\ -1 & 4 & 3 \end{bmatrix} \text{ are}
$$

conformable for subtraction.

i.e.
$$
A-B = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 5 & 0 \end{bmatrix} - \begin{bmatrix} 0 & 2 & 2 \\ -1 & 4 & 3 \end{bmatrix}
$$

= $\begin{bmatrix} 2-0 & 3-2 & 4-2 \\ 1-(-1) & 5-4 & 0-3 \end{bmatrix} = \begin{bmatrix} 2 & 1 & 2 \\ 2 & 1 & -3 \end{bmatrix}$

Some

3. Commutative and Associative Law of Addition of Matrices:

 $A + B = B + A$ Commutative w.r.t + $A+(B+C) = (A+B)+C$ Associative w.r.t +

4. Additive Identity of a Matrix:

If A and B are two matrices of same order and

 $A + B = A$ or $B + A = A$ then matrix B is called additive identity of

matrix A.

For any matrix A and zero matrix O of same order, O is called additive identity of A as

 $A + O = A = O + A$

5. Additive Inverse of a Matrix:

If A and B are two matrices of same order and

 $A + B = 0 = B + A$

Then A and B are called additive inverse of each other.

Note: Additive inverse of any matrix A is $-A$ obtained by changing their signs of each element.

$$
A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \quad -A = \begin{bmatrix} -a & -b \\ -c & -d \end{bmatrix}
$$

EXERCISE 1.3

Q.1. Which of the following matrices are conformable for addition ?

$$
A = \begin{bmatrix} 2 & 1 \\ -1 & 3 \end{bmatrix}, B = \begin{bmatrix} 3 \\ 1 \end{bmatrix}, C = \begin{bmatrix} 1 & 0 \\ 2 & -1 \\ 1 & -2 \end{bmatrix},
$$

\n
$$
D = \begin{bmatrix} 2+1 \\ 3 \end{bmatrix}, E = \begin{bmatrix} -1 & 0 \\ 1 & 2 \end{bmatrix}, E = \begin{bmatrix} 3 & 2 \\ 1+1 & -4 \\ 3+2 & 2+1 \end{bmatrix}
$$

\nSoI. $A = \begin{bmatrix} 2 & 1 \\ -1 & 3 \end{bmatrix}$
\n
$$
2 - by - 2
$$

\n
$$
B = \begin{bmatrix} 3 \\ 2 & -1 \\ 1 & -2 \end{bmatrix}
$$

\n
$$
3 - by - 2
$$

\n
$$
D = \begin{bmatrix} 2+1 \\ 3 \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \end{bmatrix}
$$

\n
$$
2 - by - 2
$$

\n
$$
D = \begin{bmatrix} -1 & 0 \\ 1 & 2 \end{bmatrix}
$$

\n
$$
2 - by - 2
$$

\n
$$
F = \begin{bmatrix} 3 & 2 \\ 1+1 & -4 \\ 3+2 & 2+1 \end{bmatrix} = \begin{bmatrix} 3 & 2 \\ 2 & -4 \\ 5 & 3 \end{bmatrix}
$$

\n
$$
3 - by - 2
$$

A and E are conformable for addition because their orders are same.

B and D are conformable for addition because their orders same.

C and F are conformable for addition because their orders are same.

Q.2: Find the additive inverse of following matrices.

$$
A = \begin{bmatrix} 2 & 4 \\ -2 & 1 \end{bmatrix}, B = \begin{bmatrix} 1 & 0 & -1 \\ 2 & -1 & 3 \\ 3 & -2 & 1 \end{bmatrix},
$$

\n
$$
C = \begin{bmatrix} 4 \\ -2 \end{bmatrix}, D = \begin{bmatrix} 1 & 0 \\ -3 & -2 \\ 2 & 1 \end{bmatrix},
$$

\n
$$
E = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, F = \begin{bmatrix} \sqrt{3} & 1 \\ -1 & \sqrt{2} \end{bmatrix}
$$

\nSol.
$$
A = \begin{bmatrix} 2 & 4 \\ -2 & 1 \end{bmatrix}
$$

\n
$$
-A = \begin{bmatrix} -2 & -4 \\ 2 & -1 \end{bmatrix}
$$
 is additive inverse of A

Sol.
$$
B = \begin{bmatrix} 1 & 0 & -1 \ 2 & -1 & 3 \ 3 & -2 & 1 \end{bmatrix}
$$
 (i)
\n $-B = \begin{bmatrix} -1 & 0 & 1 \ -2 & 1 & -3 \ -3 & 2 & -1 \end{bmatrix}$ is additive inverse of B
\n**Sol.** $C = \begin{bmatrix} 4 \ -2 \ 2 \end{bmatrix}$
\n $-C = \begin{bmatrix} -4 \ -2 \ 2 \end{bmatrix}$ is additive inverse of C
\n**Sol.** $D = \begin{bmatrix} 1 & 0 \ -3 & -2 \ -2 & -1 \end{bmatrix}$ is additive inverse of D
\n $-D = \begin{bmatrix} -1 & 0 \ 3 & 2 \ -2 & -1 \end{bmatrix}$ is additive inverse of E
\n**Sol.** $E = \begin{bmatrix} 1 & 0 \ 1 & 0 \end{bmatrix}$
\n $-E = \begin{bmatrix} -1 & 0 \ 0 & -1 \end{bmatrix}$ is additive inverse of E
\n**Sol.** $F = \begin{bmatrix} -\sqrt{3} & -1 \ -1 & \sqrt{2} \end{bmatrix}$ is additive inverse of F
\n**Q.3.** If $A = \begin{bmatrix} -1 & 2 \ 2 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 1 \ -1 \end{bmatrix}$
\n $C = [1 \ -1 \ 2], D = \begin{bmatrix} 1 & 2 & 3 \ -1 & 0 & 2 \end{bmatrix}$ then
\nfind, (i) $A + \begin{bmatrix} 1 & 1 \ 1 & 1 \end{bmatrix}$ (ii) $B + \begin{bmatrix} -2 \ 3 \end{bmatrix}$
\n(iii) $C + [-2 \ 1 \ 3]$ (iv) $D + \begin{bmatrix} 0 & 1 & 0 \ 2 & 0 & 1 \end{bmatrix}$
\n(v) $2A$ (vi) (-1) B (vii) (-2)C
\n(viii)3D (ix) 3C
\n(i) $A + \begin{bmatrix} 1 & 1 \ 1 & 1 \end{bmatrix}$
\n $= \begin{bmatrix} -1 & 2 \ 2 & 1 \end{bmatrix} + \begin{bmatrix} 1 & 1 \ 1 & 1 \end{bmatrix}$

(ii)
$$
B + \begin{bmatrix} -2 \ 3 \end{bmatrix}
$$

\nSol. $= B + \begin{bmatrix} -2 \ -1 \end{bmatrix}$
\n $= \begin{bmatrix} 1 \ -1+3 \end{bmatrix}$
\n $= \begin{bmatrix} 1-2 \ -1+3 \end{bmatrix}$
\n $= \begin{bmatrix} -1 \ -2 \ 2 \end{bmatrix}$
\n(iii) $C + \begin{bmatrix} -2 \ 1 \ \end{bmatrix}$
\n $= \begin{bmatrix} -1 \ 2 \end{bmatrix}$
\n(ii) $C + \begin{bmatrix} -2 \ 1 \ \end{bmatrix}$
\n(iii) $C + \begin{bmatrix} -2 \ 1 \ \end{bmatrix}$
\n $= \begin{bmatrix} -1 \ 2 \end{bmatrix}$
\n(iii) $C + \begin{bmatrix} -2 \ 1 \ \end{bmatrix}$
\n $= \begin{bmatrix} 1 \ -1 \ \end{bmatrix}$
\n $= \begin{bmatrix} 1 \ -1 \ \end{bmatrix}$
\n(ii) $D + \begin{bmatrix} 0 \ 1 \ 2 \ 0 \end{bmatrix}$
\n $= \begin{bmatrix} 1 & 0 \ -1 & 0 \end{bmatrix}$
\n $= \begin{bmatrix} 1 & 2 \ -1 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 1 \ 2 & 0 \end{bmatrix}$
\n $= \begin{bmatrix} 1+0 \ 2+1 \ \end{bmatrix}$
\n $= \begin{bmatrix} 1+0 \ 1+0 \ \end{bmatrix}$
\n $= \begin{bmatrix} 1+0 \ 1+0 \ \end{bmatrix}$
\n $= \begin{bmatrix} 1 \ 1 \ 0 \ \end{bmatrix}$
\n(iii) $2A$
\n $= 2A$
\n $= 2\begin{bmatrix} -1 & 2 \ 2 & 1 \end{bmatrix} = \begin{bmatrix} (2)(-1) & (2)(2) \ (2)(2) & (2)(1) \end{bmatrix}$
\n $= 2A = \begin{bmatrix} -2 & 4 \ -2 & 1 \end{bmatrix}$
\n(iv) $(-1)B$
\n $= \begin{bmatrix} (-1)(1) \ -1)$

Q.4: Perform the indicated operations and simplify the following: Two matrices are said to conformable for addition and subtraction if their orders same.

Sol. $=$

 $\overline{\mathsf{L}}$

 $=$ $\overline{\mathsf{L}}$

 $=$ $\overline{\mathsf{L}}$

 $\begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$

 -1 0 1 2

 $\begin{bmatrix} 2 & 3 & 4 \end{bmatrix}$

1 $\overline{4}$ $\overline{}$ $+$

 $\begin{bmatrix} 1+1 & 2+1 & 3+1 \end{bmatrix}$

 \rfloor $\begin{bmatrix} 4 \\ 1 \end{bmatrix}$

 $-1+2$ $1+3$ $\overline{}$

 $\begin{bmatrix} 3+1 \\ -1+2 \end{bmatrix}$

3 3 3

 $\overline{}$

 $\begin{bmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \end{bmatrix}$

2 2 2 3 3 3

 $\overline{}$ $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$

(v)
$$
\begin{bmatrix} 1 & 2 & 3 \ 2 & 3 & 1 \ 3 & 1 & 2 \end{bmatrix} + \begin{bmatrix} 1 & 0 & -2 \ 0 & 2 & -1 \ 0 & 2 & -1 \end{bmatrix}
$$

\n**Sol.** $= \begin{bmatrix} 1 & 2 & 3 \ 2 & 3 & 1 \ 3 & 1 & 2 \end{bmatrix} + \begin{bmatrix} 1 & 0 & -2 \ -2 & -1 & 0 \ 0 & 2 & -1 \end{bmatrix}$
\n $= \begin{bmatrix} 1+1 & 2+0 & 3-2 \ 2-2 & 3-1 & 1+0 \ 3+0 & 1+2 & 2-1 \end{bmatrix}$
\n $= \begin{bmatrix} 2 & 2 & 1 \ 0 & 2 & 1 \ 3 & 3 & 1 \end{bmatrix}$
\n(vi) $\begin{bmatrix} 1 & 2 \ 0 & 1 \end{bmatrix} + \begin{bmatrix} 2 & 1 \ 1 & 0 \end{bmatrix} + \begin{bmatrix} 1 & 1 \ 1 & 1 \end{bmatrix}$
\n $= \begin{bmatrix} 1+2+1 & 2+1+1 \ 0+1 & 1+0+1 \end{bmatrix}$
\n $= \begin{bmatrix} 4 & 4 \ 2 & 4 \end{bmatrix}$
\n**Q.5:** For the matrices $A = \begin{bmatrix} 1 & 2 & 3 \ 2 & 3 & 1 \ 1 & -1 & 0 \end{bmatrix}$,
\n $B = \begin{bmatrix} 1 & -1 & 1 \ 2 & -2 & 2 \ 2 & -2 & 2 \end{bmatrix}$ and $C = \begin{bmatrix} -1 & 0 & 0 \ 0 & -2 & 3 \ 1 & 1 & 2 \end{bmatrix}$
\nverify the following rules:
\n(i) $A + C = C + A$
\n**Sol.** L.H.S.
\n $A + C = \begin{bmatrix} 1 & 2 & 3 \ 2 & 3 & 1 \ -1 & 0 & 0 \end{bmatrix} + \begin{bmatrix} -1 & 0 & 0 \ 0 & -2 & 3 \ 1 & 1 & 2 \end{bmatrix}$
\n $\begin{bmatrix} 1-1 & 2+0 & 3+0 \ 2+0 & 3-2 & 1+3 \ 1+1 & -$


```
(iv) A+(B + A) = 2A + B
Sol. L.H.S: 
             A + (B + A)=
                   \overline{\phantom{a}}I
                                             \overline{\phantom{a}}\begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{bmatrix}2 3 1
                      1 -1 0+ 
                                                     \setminus\int\bigg)\begin{array}{c} \hline \end{array}\overline{\phantom{a}}\overline{\phantom{a}}\overline{\phantom{a}}\begin{bmatrix} 1 & -1 & 1 \\ 2 & -2 & 2 \end{bmatrix}2 -2 2
                                                            3 1 3
                                                                                       + 
                                                                                           \overline{\phantom{a}}I
                                                                                                                     \overline{\phantom{a}}\begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{bmatrix}2 3 1
                                                                                              1 -1 0A+ (B + A)= 
                   \overline{\phantom{a}}\overline{\phantom{a}}\overline{\phantom{a}}\begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{bmatrix}2 3 1
                     1 \quad -1 \quad 0+ 
                                                            \setminus\mathsf{I}I
                                                            ſ
                                                                                                                         J
                                                                                                                         \overline{\phantom{a}}\overline{\phantom{a}}\backslashL
                                                                \mathbf{r}\mathbf{r}\mathbf{r}\rfloor\overline{\phantom{a}}\overline{\phantom{a}}1+1 -1+2 1+32+2 -2+3 2+13+1 1-1 3+0A+ (B + A) =\overline{\phantom{a}}\overline{\phantom{a}}\overline{\phantom{a}}\begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{bmatrix}2 3 1
                                                     1 \quad -1 \quad 0+\overline{\mathsf{L}}\parallel\overline{\phantom{a}}\begin{bmatrix} 2 & 1 & 4 \\ 4 & 1 & 3 \end{bmatrix}4 1 3
                                                                                              4 0 3
              = 
                   \overline{\phantom{a}}\mathbf{r}\begin{bmatrix} 1+2 & 2+1 & 3+4 \end{bmatrix}\overline{\phantom{a}}2+4 3+1 1+31+4 -1+0 0+3A+(B+A) =\overline{\phantom{a}}\overline{\phantom{a}}\overline{\phantom{a}}\begin{bmatrix} 3 & 3 & 7 \\ 6 & 4 & 4 \end{bmatrix}6 4 4
                                                       5 -1 3R.H.S: 
              2A + B = 2\overline{\mathsf{L}}\parallel\overline{\phantom{a}}\begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{bmatrix}2 3 1
                                            1 -1 0+L
                                                                                 \mathsf{I}\mathsf{I}\mathsf{I}\rfloor1
                                                                                                                 \overline{\phantom{a}}1 \quad -1 \quad 12 -2 2
                                                                                     3 1 3
             2A + B=
                   L
                   L
                   \mathbf{r}\mathbf{r}\overline{\phantom{a}}\overline{\phantom{a}}\overline{\phantom{a}}2\times1 2\times2 2\times3]
                       2 \times 2 2 \times 3 2 \times 12 \times 1 2\times -1 2\times 0+
                                                                           L
                                                                           \mathsf{L}\mathbf{r}\mathsf{L}\rfloor1
                                                                                                            \overline{\phantom{a}}1 \quad -1 \quad 12 -2 2
                                                                               3 1 3
              2A + B =\overline{\phantom{a}}\overline{\phantom{a}}\overline{\phantom{a}}\begin{bmatrix} 2 & 4 & 6 \\ 4 & 6 & 2 \end{bmatrix}4 6 2
                                              2 -2 0
                                                                               +L
                                                                                    \mathbf{r}\mathbf{r}L
                                                                                                                    ┙
                                                                                                                    \overline{\phantom{a}}\overline{\phantom{a}}1 \quad -1 \quad 12 -2 2
                                                                                        3 1 3
              2A + B =L
                                           \mathbf{r}\mathbf{r}\mathbf{r}」
                                                                                               \overline{\phantom{a}}\overline{\phantom{a}}2+1 4-1 6+1]
                                               4+2 6-2 2+22+3 -2+1 0+32A + B =\overline{\phantom{a}}\overline{\phantom{a}}\overline{\phantom{a}}\begin{bmatrix} 3 & 3 & 7 \\ 6 & 4 & 4 \end{bmatrix}6 4 4
                                             5 -1 3Hence proved L.H.S = R.H.S
 (v) (C - B) + A = C + (A - B)Sol. L.H.S: 
(C - B) + A=
    \setminus\mathsf{I}\mathsf{I}ſ
                                                                                J
                                                                                \overline{\phantom{a}}\overline{\phantom{a}}\backslashL
        \mathsf{L}\mathbf{r}\begin{bmatrix} -1 & 0 & 0 \end{bmatrix}\rfloor\overline{\phantom{a}}\begin{bmatrix} 0 & -2 & 3 \end{bmatrix}1 1 2
                                          -
                                              L
                                              \mathsf{L}\mathbf{r}\mathsf{L}J
                                                                            \overline{\phantom{a}}\overline{\phantom{a}}1 \quad -1 \quad 12 -2 2
                                                  3 1 3
                                                                                   +\overline{\phantom{a}}\overline{\phantom{a}}\overline{\phantom{a}}2 3 1
                                                                                                    1 2 3
                                                                                               -1
```
Stars Mathematics Notes-IX (Unit-1) Matrices And Determinants

 $(C - B) + A$ = \setminus I I $(|-1-1 \ 0+1 \ 0-1|)$ \rfloor $\overline{}$ $\overline{}$ L \mathbf{r} \mathbf{r} $\begin{bmatrix} -1 & -1 & 0 & +1 & 0 & -1 \end{bmatrix}$ $\overline{}$ $\left| \ \right|$ + $0 - 2 - 2 + 2$ $1 - 3$ $1 - 1$ $2 - 3$ L $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{bmatrix}$ $\vert 1 \vert$ $\overline{}$ $\begin{array}{c} 3 \\ 1 \end{array}$ 2 3 1 -1 $(C - B) + A$ $=\begin{vmatrix} -2 & 0 & 1 \\ 1 & 0 & 0 \end{vmatrix}$ L \mathbf{r} $\begin{bmatrix} -2 & 1 & -1 \end{bmatrix}$ $\begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$ \rfloor $\overline{}$ $\begin{bmatrix} -2 & 0 & 1 \\ -2 & 0 & -1 \end{bmatrix}$ $\overline{}$ $\frac{3}{1}$ 3 $1 -1 0$ $(C - B) + A$ $=$ L \mathbf{r} $\begin{bmatrix} -2+1 & 1+2 & -1+3 \end{bmatrix}$ $\begin{bmatrix} -1 & 3 & 2 \end{bmatrix}$ $\begin{vmatrix} -1 & -1 & -1 \end{vmatrix}$ $\overline{}$ $\begin{vmatrix} -2+2 & 0+3 & 1+1 \\ 0 & 0 & 1 \end{vmatrix} =$ $-2+1$ 0-1 $-1+0$ L \rfloor $\overline{}$ $\overline{}$ 0 3 2 **R.H.S:** $C + (A - B)$ $C + (A - B)$ = $\overline{}$ $\overline{}$ \rfloor $\begin{bmatrix} -1 & 0 & 0 \\ 0 & -2 & 3 \end{bmatrix}$ $0 \t -2 \t 3$ 1 1 2 + \setminus \int J $\overline{}$ $\overline{}$ \setminus $\overline{\mathsf{L}}$ \mathbf{r} $\overline{}$ $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{bmatrix}$ 2 3 1 $1 \quad -1 \quad 0$ \overline{a} $\overline{}$ $\begin{bmatrix} 1 & -1 & 1 \\ 2 & -2 & 2 \end{bmatrix}$ $\overline{}$ $\overline{2}$ 2 -2 2 3 1 3 $C + (A - B)$ $=$ $\begin{bmatrix} 1 & 1 & 2 \end{bmatrix}$ $\begin{vmatrix} 0 & -2 & 3 \end{vmatrix}$ $\begin{bmatrix} -1 & 0 & 0 \end{bmatrix}$ $\overline{2}$ $\overline{}$ $|+|$ \setminus I ſ J $\overline{}$ $\overline{}$ \setminus L \mathbf{r} \mathbf{r} $\begin{bmatrix} 1-1 & 2+1 & 3-1 \end{bmatrix}$ J $\overline{}$ $\begin{vmatrix} 3-1 \\ 1-2 \end{vmatrix}$ $2 - 2$ 3+2 $1-3$ $-1-1$ $0-3$ $C + (A - B)$ $=$ \vert 1 $\begin{vmatrix} 0 & -2 & 3 \end{vmatrix}$ $\begin{bmatrix} -1 & 0 & 0 \end{bmatrix}$ \rfloor $\overline{}$ $\begin{vmatrix} + & 0 & 5 & -1 \end{vmatrix}$ $1²$ L \mathbf{r} $\begin{bmatrix} 0 & 3 & 2 \end{bmatrix}$ \rfloor $\overline{}$ -1 -2 -2 -3 $C + (A - B)$ $\lfloor 1-2 \rfloor$ 1-2 2-3 \mathbf{r} $\begin{vmatrix} 0+0 & -2+5 & 3-1 \end{vmatrix}$ $\begin{bmatrix} -1+0 & 0+3 & 0+2 \end{bmatrix}$ J $\overline{}$ $3 - 1$ $C + (A - B)$ $\begin{vmatrix} -1 & -1 & -1 \end{vmatrix}$ \mathbf{r} $\begin{array}{|c|c|c|c|c|}\n\hline\n0 & 3 & 2\n\end{array}$ L \rfloor $\overline{}$ $\overline{}$ -1 3 2 **Hence proved. L.H.S = R.H.S** (vi) $2A + B = A + (A + B)$ **Sol: L.H.S:** $2A + B = 2$ $\overline{\mathsf{L}}$ \parallel $\overline{}$ $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{bmatrix}$ 2 3 1 $1 -1 0$ $+$ L I I I \rfloor 1 $2|$ $\begin{bmatrix} -1 & 1 \\ -2 & 2 \end{bmatrix}$ 2 -2 2 3 1 3 $2A + B$ $=\begin{bmatrix} (2)(2) & (2)(3) & (2)(1) \\ (2)(2) & (2)(3) & (2)(1) \end{bmatrix}$ $\begin{bmatrix} (2)(2) & (2)(3) & (2)(1) \\ (2)(1) & (2)(-1) & (2)(0) \end{bmatrix}$ $\lceil (2)(1) \rceil$ $\int_{0}^{1} \begin{bmatrix} 2 & -2 & 4 \\ 3 & 1 & 3 \end{bmatrix}$ $+$ $(2)(1)$ $(2)(2)$ $(2)(3)$ $\begin{bmatrix} 2 \end{bmatrix}$ $\overline{}$ $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ -1 -2 $2A + B =$ $\begin{bmatrix} 2 & -2 & 0 \end{bmatrix}$ $\begin{vmatrix} 4 & 6 & 2 \end{vmatrix}$ $\lceil 2 \rceil$ $\overline{}$ $|+|$ $\begin{bmatrix} 4 & 6 \\ 6 & 2 \end{bmatrix}$ L \mathbf{r} $\lceil 1 \rceil$ $\overline{3}$ $\overline{}$ $\overline{}$ -1 1 -2 $\overline{1}$

 $2A + B =$ $\begin{bmatrix} 2+3 & -2+1 & 0+3 \end{bmatrix}$ $\begin{vmatrix} 4+2 & 6-2 & 2+2 \end{vmatrix}$ \mathbf{r} $0+3$ $\overline{}$ $\overline{}$ $2+1$ 4-1 6+1] $2A + B =$ L \mathbf{r} \mathbf{r} $\begin{bmatrix} 3 & 3 & 7 \end{bmatrix}$ $\overline{}$ $\vert 4 \vert$ 4 $5 -1 3$ **R.H.S:** $A + (A + B)$ $=\begin{vmatrix} 1 & 2 & 3 & 1 \end{vmatrix}$ + $\begin{bmatrix} 2 & 3 & 1 \\ 1 & -1 & 0 \end{bmatrix}$ $\begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$ $\rfloor^+\bigl(\bigl\lfloor$ 3] I ſ J $\overline{}$ $\overline{}$ \setminus $\begin{bmatrix} 1 & 2 & 3 & 1 \end{bmatrix}$ $\vert 1 \vert$ $1 \quad -1 \quad 0$ $\overline{}$ $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{bmatrix}$ $+$ $\begin{bmatrix} 1 & -1 & 1 \\ 2 & -2 & 2 \end{bmatrix}$ $\overline{2}$ 2 -2 2 $\overline{1}$ $\overline{}$ $A + (A + B)$ $=$ \vert 1 L $\begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$ $\overline{}$ $|+|$ ³ -1 \setminus I ſ J $\overline{}$ $\overline{}$ \backslash L L $\begin{vmatrix} 2+2 & 3-2 & 1+2 \end{vmatrix}$ $\vert 1+1 \vert$ \rfloor $\overline{}$ $1+2$ $2-1$ $3+1$] $1+3$ $-1+1$ $0+3$ $A + (A + B) =$ $\begin{bmatrix} 1 & -1 & 0 \end{bmatrix}$ $\begin{vmatrix} 2 & 3 & 1 \end{vmatrix}$ $\begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$ $\int_{-1}^{+1} \begin{pmatrix} 4 & 1 & 3 \\ 4 & 0 & 3 \end{pmatrix}$ $|+|$ $\lceil 2 \rceil$ $rac{4}{3}$ 1 1 $A + (A + B) =$ $\begin{bmatrix} 1+4 & -1+0 & 0+3 \end{bmatrix}$ $\begin{array}{|c|c|c|c|c|}\n\hline\n2+4 & 3+1 & 1+3\n\end{array}$ $\begin{bmatrix} 1+2 & 2+1 & 3+4 \end{bmatrix}$ $\overline{}$ $\begin{bmatrix} 3+4 \\ 1+3 \end{bmatrix}$ $A + (A + B) =$ $\vert 5 \vert$ \mathbf{r} \mathbf{r} $\overline{}$ \vert 4 3 3 7 4 -1 **Hence proved. L.H.S = R.H.S** (vii) $(C - B) - A = (C - A) - B$ **Sol. L.H.S:** $(C - B) - A$ = \setminus \int \int $\bigg)$ $\overline{}$ $\overline{}$ $\begin{bmatrix} -1 & 0 & 0 \\ 0 & -2 & 3 \end{bmatrix}$ $0 \t -2 \t 3$ 1 1 2 $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\begin{bmatrix} 1 & -1 & 1 \\ 2 & -2 & 2 \end{bmatrix}$ 2 -2 2 3 1 3 \parallel $\overline{}$ I $\overline{}$ $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{bmatrix}$ 2 3 1 $1 -1 0$ $(C - B) - A$ = \setminus I I ſ $\bigg)$ $\overline{}$ $\overline{}$ \setminus $\lfloor 1-3 \rfloor$ 1-1 2-3 \mathbf{r} $\begin{vmatrix} 0-2 & -2+2 & 3-2 \end{vmatrix}$ $\begin{bmatrix} -1 & -1 & 0 & +1 & 0 & -1 \end{bmatrix}$ ╛ $\overline{}$ \mathbb{R} $\overline{}$ $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{bmatrix}$ $\overline{}$ $\overline{1}$ 3 $1 \quad -1 \quad 0$ $(C - B) - A$ = $\begin{bmatrix} -2 & 0 & 1 \\ -2 & 0 & -1 \end{bmatrix}$ \mathbf{r} \mathbf{r} $\begin{bmatrix} -2 & 1 & -1 \end{bmatrix}$ $\overline{}$ -2 0 1 \vert $\overline{}$ $1¹$ $2 \quad 3^-$ 2 3 1 $1 -1 0$ $(C - B) - A =$ $\lfloor -2 - 1 \ 0 + 1 \ -1 - 0 \rfloor$ \mathbf{r} $\bar{-2}$ -1 $\overline{}$ $-2-2$ 0-3 1-1 $1 - 2 -1 -3$ $-2-1$ 0+1 $-1-0$ $(C - B) - A =$ L \mathbf{r} $\begin{vmatrix} -4 & -3 & 0 \end{vmatrix}$ L \rfloor $\overline{}$ $\overline{}$ -3 -1 -4] -3 1 -1 **R.H.S:**

L L $-1+0$ 1+0 $-2-2$ $1+1$

 -1 1 -4 2

J $\overline{}$ $\overline{}$ \backslash

J $\overline{}$

 $\begin{bmatrix} -1 & 0 & 0 \\ 0 & -2 & 3 \end{bmatrix}$ $0 \t -2 \t 3$ 1 1 2

J $\overline{}$ \vert \backslash

 $\overline{}$

J $\overline{}$ $\overline{}$ \setminus

 \rfloor $\overline{}$

 \rfloor $\overline{}$

 $\begin{bmatrix} 1 & -1 & 1 \end{bmatrix}$

2 -2 2 3 1 3

> J $\overline{}$ $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$

┙ $\overline{}$ $\overline{}$

 \rfloor $\overline{}$ $\overline{}$

 $3+2$ $\overline{}$ $\overline{}$

 $5¹$ $\overline{}$ $\overline{}$

 $2-1$ $3+1$

 $\overline{}$ $6\vert$

 $\overline{}$

2 -1 1 2 0 -1 2 0 1

 $\overline{}$

J $\overline{}$ $\overline{}$ \setminus

 $\begin{array}{c} \boxed{3} \end{array}$

 $\vert 1 \vert$

 $\begin{vmatrix} 2 & -2 & 2 \end{vmatrix}$

 $3¹$

 -1

 $+$ L \mathbf{r} \mathbf{r}

」 $\overline{}$ \cdot

J $\overline{}$ $+$ \backslash

 $\overline{}$ $\overline{}$

L I I I \overline{a} $\overline{\mathsf{L}}$ \mathbf{r}

 $(C - A) - B$ = \setminus \mathbf{I} \mathbf{I} ſ $\bigg)$ $\bigg)$ $\overline{}$ $\overline{}$ \rfloor $\begin{bmatrix} -1 & 0 & 0 \\ 0 & 2 & 3 \end{bmatrix}$ $0 \t -2 \t 3$ 1 1 2 $\overline{}$ L $\overline{}$ \rfloor $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{bmatrix}$ 2 3 1 $1 -1 0$ \pm $\overline{}$ $\overline{}$ $\overline{}$ $\begin{bmatrix} 1 & -1 & 1 \\ 2 & 2 & 2 \end{bmatrix}$ 2 -2 2 3 1 3 $(C - A) - B$ = \setminus I \mathbf{I} ſ J $\overline{}$ $\overline{}$ \backslash L L $\begin{vmatrix} 0-2 & -2-3 & 3-1 \end{vmatrix}$ $\begin{bmatrix} -1 & -1 & 0 & -2 & 0 & -3 \end{bmatrix}$ J $\overline{}$ $\left| \ \right|$ $1 - 1$ $1 + 1$ L L \mathbf{r} $\begin{bmatrix} 1 & -1 & 1 \end{bmatrix}$ \mathcal{L} 1 $\overline{}$ 2 -2 2 3 1 3 $(C - A) - B$ = L \mathbf{r} \mathbf{r} L \rfloor $\overline{}$ $\overline{}$ -2 -2 -3] -2 -5 2 0 2 2 -L \mathbf{r} \mathbf{r} $\begin{bmatrix} 1 & -1 & 1 \end{bmatrix}$ \rfloor 1 $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ 2 -2 2 3 1 3 $(C - A) - B =$ L \mathbf{r} \mathbf{r} $\begin{bmatrix} -2-1 & -2+1 & -3-1 \end{bmatrix}$ J $\overline{}$ $-2-2$ $-5+2$ $2-2$ $0-3$ 2-1 2-3 $(C - A) - B =$ L \mathbf{r} L L \rfloor $\overline{}$ $\overline{}$ -3 -1 -4] -4 -3 0 -3 1 -1 **Hence proved L.H.S = R.H.S** $(viii)(A + B) + C = A + (B + C)$ **Sol. L.H.S:** $(A + B) + C$ = \setminus \mathbf{I} I ſ $\bigg)$ $\begin{array}{c} \hline \end{array}$ $\overline{\mathsf{L}}$ $\overline{}$ \rfloor $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{bmatrix}$ 2 3 1 $1 \quad -1 \quad 0$ $+$ $\overline{}$ $\overline{}$ \rfloor $\begin{bmatrix} 1 & -1 & 1 \\ 2 & -2 & 2 \end{bmatrix}$ 2 -2 2 3 1 3 $+$ $\overline{\mathsf{L}}$ I \rfloor $\begin{bmatrix} -1 & 0 & 0 \\ 0 & -2 & 3 \end{bmatrix}$ $0 \t -2 \t 3$ 1 1 2 $(A + B) + C$ = \setminus I I ſ J $\overline{}$ $\overline{}$ \backslash L L \mathbf{r} \mathbf{r} J $\overline{}$ $\overline{}$ $1+1$ 2-1 3+1 $2+2$ $3-2$ $1+2$ $1+3$ $-1+1$ $0+3$ $+$ L L \mathbf{r} $\lceil -1 \rceil$ $\overline{2}$ $\overline{}$ $\overline{}$ -1 0 0 $0 \t -2 \t 3$ 1 1 2 $(A + B) + C$ $=$ $\overline{}$ $\lceil 2 \rceil$ $\begin{bmatrix} 1 & 1 & 3 \\ 4 & 0 & 3 \end{bmatrix}$ + $\begin{bmatrix} 2 & 1 & 4 \\ 4 & 1 & 3 \end{bmatrix}$ $\begin{bmatrix} 4 & 1 & 3 \end{bmatrix}$ + L L \rfloor $\overline{}$ $\overline{}$ -1 0 0 $0 \t -2 \t 3$ 1 1 2 $(A + B) + C =$ $\vert 4+1 \vert$ \mathbf{r} $\begin{bmatrix} 2-1 & 1+0 & 4+0 \end{bmatrix}$ $3+2$ $\overline{}$ $4+0$ 1-2 3+3 $0+1$ $(A + B) + C =$ $\begin{bmatrix} 5 & 1 & 5 \end{bmatrix}$ $\begin{vmatrix} 4 & -1 & 6 \end{vmatrix}$ $\begin{bmatrix} 1 & 1 & 4 \end{bmatrix}$ $\overline{}$ $6\vert$ **R.H.S:** $A + (B + C)$ = L $\overline{}$ \rfloor $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{bmatrix}$ 2 3 1 $1 -1 0$ + \setminus \int J $\overline{}$ $\overline{}$ \backslash $\overline{}$ $\overline{}$ $\overline{}$ $\begin{bmatrix} 1 & -1 & 1 \\ 2 & -2 & 2 \end{bmatrix}$ 2 -2 2 3 1 3 + $\overline{}$ $\begin{bmatrix} -1 & 0 & 0 \\ 0 & -2 & 3 \end{bmatrix}$ \rfloor $\overline{}$ $\overline{}$ $0 \t -2 \t 3$ 1 1 2 $A + (B + C)$ $=\begin{vmatrix} 2 & 3 & 1 \end{vmatrix}$ $\overline{}$ $\lceil 1 \rceil$ J (L $\overline{}$ $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{bmatrix}$ -1 $+$ I ſ \mathbf{r} \mathbf{r} L $A + (B + C)$ $=$ L L $\begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$ $\overline{}$ 2 3 1 $\begin{vmatrix} 1 \end{vmatrix}$ -1 $37 \overline{0}$ $A + (B + C) =$ $\begin{bmatrix} 1+4 & -1+2 & 0+5 \end{bmatrix}$ $\begin{vmatrix} 2+2 & 3-4 & 1+5 \end{vmatrix}$ $\lceil 1+0 \rceil$ $A + (B + C) = \begin{vmatrix} 4 & -1 & 6 \end{vmatrix}$ $\overline{\mathsf{L}}$ $\begin{bmatrix} 1 & 1 & 4 \end{bmatrix}$ 5 1 5 **Hence proved. L.H.S = R.H.S** (ix) **A** + (**B** – **C**) = (**A** – **C**) + **B Sol. L.H.S:** $A + (B - C)$ = $\overline{}$ $\overline{}$ $\overline{}$ $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{bmatrix}$ 2 3 1 $1 -1 0$ + \setminus \int $\overline{}$ $\overline{}$ $\begin{bmatrix} 1 & -1 & 1 \\ 2 & -2 & 2 \end{bmatrix}$ 2 -2 2 3 1 3 $A + (B - C)$ $=$ L \mathbf{r} $\begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$ $\begin{bmatrix} 1+1 & -1-0 & 1-0 \end{bmatrix}$ $\overline{}$ $+$ 3 -1 \setminus I \mathbf{r} L \mathbf{r} \mathbf{r} $2-0$ $-2+2$ $2-3$ $3-1$ $1-1$ $3-2$ $A + (B - C)$ = $\overline{}$ $\overline{}$ $\overline{}$ $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{bmatrix}$ 2 3 1 $1 -1 0$ $+$ $A + (B - C) =$ L L \mathbf{r} $\begin{bmatrix} 1+2 & 2-1 & 3+1 \end{bmatrix}$ $2+2$ 3+0 1-1 $1+2$ $-1+0$ $0+1$ $A + (B - C) =$ $\overline{}$ $\overline{}$ $\begin{bmatrix} 3 & 1 & 4 \\ 4 & 3 & 0 \end{bmatrix}$ 4 3 0 $3 -1 1$ **R.H.S:** $(A - C) + B$ = \setminus I I ſ $\overline{}$ $\overline{}$ $\overline{}$ $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{bmatrix}$ 2 3 1 $1 -1 0$ -L \mathbf{r} \mathbf{r} L -1 0 0 $0 \t -2 \t 3$ 1 1 2 $(A - C) + B$ = \setminus I I ſ L \mathbf{r} \mathbf{r} \mathbf{r} $0 - 2$ $1+1$ 2-0 3-0] $2 - 0$ 3+2 $1 - 1 - 1 - 1$

 $(A - C) + B$

= L L \mathbf{r} L \rfloor $\overline{}$ $\overline{}$ 2 2 3] 2 $5 -2$ 0 -2 -2 $+$ L \mathbf{r} \mathbf{r} \mathbf{r} \rfloor $\overline{}$ $\overline{}$ $1 \quad -1 \quad 1$ 2 -2 2 3 1 3 $(A-C)+B=$ L L \mathbf{r} L \rfloor $\overline{}$ $\overline{}$ 2+1 2–1 3+1 $2+2$ $5-2$ $-2+2$ $0+3$ $-2+1$ $-2+3$ $(A-C) + B =$ $\overline{}$ $\overline{}$ $\overline{}$ $\begin{bmatrix} 3 & 1 & 4 \\ 4 & 3 & 0 \end{bmatrix}$ 4 3 0 $3 -1 1$ **Hence proved.** $L.H.S = R.H.S$ (x) $2A + 2B = 2(A + B)$ **Sol. L.H.S:** $2A + 2B = 2$ $\overline{\mathsf{L}}$ $\overline{}$ $\overline{}$ $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{bmatrix}$ 2 3 1 $1 -1 0$ + 2 L \mathbf{r} \mathbf{r} L J $\overline{}$ $\overline{}$ $1 \quad -1 \quad 1$ 2 -2 2 3 1 3 $2A + 2B$ $=$ $\lfloor (2)(1) (2)(-1) (2)(0) \rfloor \lfloor (2)(3) (2)(1) (2)(3) \rfloor$ $\overline{}$ $\overline{}$ $(2)(1)$ $(2)(2)$ $(2)(3)$
 $(2)(2)$ $(2)(3)$ $(2)(1)$ $(2)(2)$ $(2)(3)$ $(2)(1)$ $+$ $\overline{}$ $\overline{}$ $(2)(1)$ $(2)(-1)$ $(2)(1)$
 $(2)(2)$ $(2)(-2)$ $(2)(2)$ $(2)(2)$ $(2)(-2)$ $(2)(2)$ $2A + 2B =$ $\overline{}$ $\overline{}$ $\overline{}$ $\begin{bmatrix} 2 & 4 & 6 \\ 4 & 6 & 2 \end{bmatrix}$ 4 6 2 2 -2 0 $+$ L \mathbf{r} \mathbf{r} $\begin{bmatrix} 2 & -2 & 2 \end{bmatrix}$ \rfloor $\overline{}$ $\overline{}$ $4 -4 4$ 6 2 6 $2A + 2B = \begin{vmatrix} -12 & 6-4 & 2+4 \ 4+4 & 6-4 & 2+4 \end{vmatrix}$ L \mathbf{r} $\begin{bmatrix} 2+2 & 4-2 & 6+2 \end{bmatrix}$ 」 $\overline{}$ $2+6$ $-2+2$ 0+6 $2A + 2B =$ $\overline{}$ $\overline{}$ $\overline{}$ $\begin{bmatrix} 4 & 2 & 8 \\ 8 & 2 & 6 \end{bmatrix}$ 8 2 6 8 0 6 **R.H.S:** $2(A + B)$ $= 2$ \setminus I I ſ J $\overline{}$ $\overline{}$ \setminus $\overline{}$ $\overline{}$ $\overline{}$ $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{bmatrix}$ 2 3 1 $1 \quad -1 \quad 0$ $+$ L \mathbf{r} L \mathbf{r} \rfloor $\overline{}$ $\overline{}$ $1 \quad -1 \quad 1$ 2 -2 2 3 1 3 $2(A + B) = 2$ \setminus I I ſ J $\overline{}$ $\overline{}$ \backslash L \mathbf{r} \mathbf{r} L \rfloor $\overline{}$ $\overline{}$ $1+1$ $2-1$ $3+1$] $2+2$ $3-2$ $1+2$ $1+3$ $-1+1$ $0+3$ $2(A + B) = 2$ $\overline{}$ $\overline{}$ $\overline{}$ $\begin{bmatrix} 2 & 1 & 4 \\ 4 & 1 & 3 \end{bmatrix}$ 4 1 3 4 0 3 $2(A + B) =$ $\begin{bmatrix} 4(2) & 0(2) & 3(2) \end{bmatrix}$ $\overline{}$ $3(2)$ $\overline{}$ $2(2)$ 1(2) $4(2)$
 $4(2)$ 1(2) $3(2)$ $4(2)$ $1(2)$ $3(2)$ $2(A + B) =$ \mathbf{r} $\begin{bmatrix} 4 & 2 & 8 \end{bmatrix}$ $\overline{}$ $\begin{bmatrix} 8 \\ 6 \end{bmatrix}$ ² θ **Hence proved. L.H.S = R.H.S**

 $\begin{bmatrix} 0 & 7 \\ -3 & 8 \end{bmatrix}$ $\begin{bmatrix} 3 & 8 \end{bmatrix}$ find. **(ii)** $2A^t - 3B^t$ (i) $3A - 2B$ **Sol.** $3A - 2B = 3$ $\begin{bmatrix} 1 & -2 \\ 3 & 4 \end{bmatrix}$ - 2 $\begin{bmatrix} 0 & 7 \\ 3 & 8 \end{bmatrix}$ 3 8 $3A - 2B =$ $(1) \quad 3(-2)$ $(3) 3(4)$ (0) 2(7) $\begin{pmatrix} -3 & 2(8) \end{pmatrix}$ 」 $\overline{}$ L L $\overline{ }$ $\frac{2}{3}$ 」 \mathbf{I} \mathbf{r} L $\lceil 3(1) \rceil 3(2(-3)$ 2(8) $2(0)$ 2(7 $3(3)$ $3(4)$ $3(1)$ $3(-2)$ $3A-2B =$ $\begin{bmatrix} 3 & -6 \\ 9 & 12 \end{bmatrix}$ - $\begin{bmatrix} 0 & 14 \\ 6 & 16 \end{bmatrix}$ -6 16 $3A-2B =$ 3–0 –6–14
)+6 12–16 $\begin{bmatrix} 3-0 & -6-14 \\ 9+6 & 12-16 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ $\begin{bmatrix} 3 & -20 \\ 15 & -4 \end{bmatrix}$ $15 -4$ **(ii)** $2A^t - 3B^t$ **Sol.** $A = \begin{bmatrix} \end{bmatrix}$ $\begin{bmatrix} 1 & -2 \\ 3 & 4 \end{bmatrix}$ \Rightarrow A^t = $\begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}$ -2 4 $B = \begin{bmatrix} \end{bmatrix}$ $\begin{bmatrix} 0 & 7 \\ -3 & 8 \end{bmatrix}$ $\begin{bmatrix} 0 & 7 \\ -3 & 8 \end{bmatrix} \Rightarrow B^t = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 0 & -3 \\ 7 & 8 \end{bmatrix}$ 7 8 $2A^t - 3B^t = 2\left[$ $\begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}$ $\begin{bmatrix} 1 & 3 \\ -2 & 4 \end{bmatrix}$ - 3 $\begin{bmatrix} 0 & -3 \\ 7 & 8 \end{bmatrix}$ 7 8 $2A^{t}-3B^{t}$ = $\begin{bmatrix} 2 & 6 \\ 4 & 8 \end{bmatrix}$ $\begin{bmatrix} 2 & 6 \\ -4 & 8 \end{bmatrix}$ - $\begin{bmatrix} 0 & -9 \\ 21 & 24 \end{bmatrix}$ 21 24 $2A^{t}-3B^{t}$ = 2–0 6+9
4–21 8–24 $-4-21$ 8-24 $2A^t - 3B^t = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ $\begin{bmatrix} 2 & 15 \\ -25 & -16 \end{bmatrix}$ **25 16 Q.7. If 2** $\begin{bmatrix} 2 & 4 \\ -3 & a \end{bmatrix}$ $\begin{bmatrix} 2 & 4 \\ -3 & a \end{bmatrix} + 3$ $\begin{bmatrix} 1 & b \\ 3 & -4 \end{bmatrix}$ $\begin{bmatrix} 1 & b \\ 8 & -4 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ 」 **7 10** $\begin{bmatrix} 18 & 1 \end{bmatrix}$ then **find a and b. Sol.** 2 $\begin{bmatrix} 2 & 4 \\ -3 & a \end{bmatrix}$ $\begin{bmatrix} 2 & 4 \\ -3 & a \end{bmatrix} + 3 \begin{bmatrix} 2 & 4 \\ 3 & 3 \end{bmatrix}$ $\begin{bmatrix} 1 & b \\ 3 & -4 \end{bmatrix}$ $\begin{bmatrix} 1 & b \\ 8 & -4 \end{bmatrix}$ = $\begin{bmatrix} 7 & 10 \\ 18 & 1 \end{bmatrix}$ \vert 1 18 1 $\overline{}$ $\begin{bmatrix} 4 & 8 \\ -6 & 2a \end{bmatrix}$ $\begin{bmatrix} 4 & 8 \\ -6 & 2a \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 3 & 3b \\ 4 & -12 \end{bmatrix}$ $\begin{bmatrix} 3 & 3b \\ 24 & -12 \end{bmatrix}$ = \rfloor $7 \quad 10$] 18 1 $\overline{}$ $4+3$ 8+3b
6+24 2a-12 $\begin{bmatrix} 4+3 & 8+3b \\ -6+24 & 2a-12 \end{bmatrix} = \begin{bmatrix} 1 \end{bmatrix}$ \rfloor $7 \t10$ 18 1 $\begin{bmatrix} 18 & 2a-12 \end{bmatrix}$ = $\begin{bmatrix} 7 & 8+3b \end{bmatrix}$ $\begin{bmatrix} 7 & 10 \end{bmatrix}$ $\mathbf{1}$ 18 1 **According to the definition of equal matrices** $8 + 3b = 10$ 2a – 12 = 1 ……(ii) $3b = 10 - 8$ $2a = 1 + 12$ $3b = 2$ $2a = 13$ $\mathbf{b} =$ **2 a = 13**

3

2

$$
A^{t} = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}, B^{t} = \begin{bmatrix} 1 & 2 \\ 1 & 0 \end{bmatrix}
$$

\n
$$
A^{t} - B^{t} = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} - \begin{bmatrix} 1 & 2 \\ 1 & 0 \end{bmatrix}
$$

\n
$$
A^{t} - B^{t} = \begin{bmatrix} 1-1 & 0-2 \\ 2-1 & 1-0 \end{bmatrix}
$$

\n
$$
A^{t} - B^{t} = \begin{bmatrix} 0 & -2 \\ 1 & 1 \end{bmatrix}
$$

\nHence proved L.H.S = R.H.S
\n(iii) $A + A^{t}$ is symmetric $A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$
\nSoI. $A^{t} = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}$
\n $A + A^{t} = \begin{bmatrix} 1+1 & 2+0 \\ 0+2 & 1+1 \end{bmatrix} = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}$
\n $(A + A^{t})^{t} = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}$
\nSo proved according to the definition of symmetric matrix $(A + A^{t}) = (A + A^{t})^{t}$
\n(iv) $A - A^{t}$ is a skew symmetric $A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$
\nSoI. $A^{t} = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}$
\n $A - A^{t} = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}$
\n $A - A^{t} = \begin{bmatrix} 1-1 & 2-0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 2 \\ -2 & 0 \end{bmatrix}$
\n $(A - A^{t})^{t} = \begin{bmatrix} 0 & 2 \\ -2 & 0 \end{bmatrix}$
\nNow $-(A - A^{t}) = -\begin{bmatrix} 0 & 2 \\ -2 & 0 \end{bmatrix}$

」

」

1 0

So according to the definition of symmetric matrix, $B + B^t$ is symmetric **matrix.**

(vi)
$$
\mathbf{B} - \mathbf{B}^t
$$
 is symmetric $\mathbf{B} = \begin{bmatrix} 1 & 1 \\ 2 & 0 \end{bmatrix}$
\n**Sol.** $\mathbf{B}^t = \begin{bmatrix} 1 & 2 \\ 1 & 0 \end{bmatrix}$
\n $\mathbf{B} - \mathbf{B}^t = \begin{bmatrix} 1 & 1 \\ 2 & 0 \end{bmatrix} - \begin{bmatrix} 1 & 2 \\ 1 & 0 \end{bmatrix}$
\n $= \begin{bmatrix} 1-1 & 1-2 \\ 2-1 & 0-0 \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$

To prove that $(B - B^t)$ is skew **symmetric matrix of** $(B - B^t)$

$$
(B - Bt)t = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}t
$$

\n
$$
(B - Bt)t = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} = -\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}
$$

\nSo B - B^t is skew symmetric matrix.

EXERCISE 1.4

Note: Two Matrices A and B are conformable for multiplication (giving product AB) if number of columns of $1st$ Matrix (i.e. A) equal to the number of rows of $2nd$ Matrix (i.e. B).

Q.1: Which of the following product of matrices is conformable for multiplication?

(i)
$$
\begin{bmatrix} 1 & -1 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} -2 \\ 3 \end{bmatrix}
$$

No. of columns of 1st Matrix = 2
No. of rows of 2nd Matrix = 2
Sol. 2-by-2 2-by-1

$$
Sol. \quad 2-by-2 \qquad 2-by-
$$

So it is possible

(ii)
$$
\begin{bmatrix} 1 & -1 \ 1 & 0 \end{bmatrix} \begin{bmatrix} 2 & -1 \ 1 & 3 \end{bmatrix}
$$

No. of columns of 1st Matrix = 2
No. of rows of 2nd Matrix = 2
Sol. 2-by-2 2-by-2

So it is possible

B + B¹ =
$$
\begin{bmatrix} 1+1 & 1+2 \ 2+1 & 0+1 \end{bmatrix} = \begin{bmatrix} 2 & 3 \ 3 & 0 \end{bmatrix}
$$

\n(B + B¹)² = $\begin{bmatrix} 2 & 3 \ 3 & 0 \end{bmatrix}$
\n(B + B¹)² = $\begin{bmatrix} 2 & 3 \ 3 & 0 \end{bmatrix} = -(B + B1)$
\nSo, according to the definition of
\n**SET UP** of the following to the definition of
\n**SET UP** of the following to the
\n**SET UP** of the following product
\n
$$
[3-1]^2 = \begin{bmatrix} 1 & 1 \ -1 & 1-2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \ 0 & 0 \end{bmatrix}
$$

\n
$$
[3-1]^2 = \begin{bmatrix} 1 & 1 \ -1 & 1-2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \ 0 & -1 \end{bmatrix}
$$

\n
$$
[3-1]^2 = \begin{bmatrix} 1 & 1 \ -1 & 1-2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \ 0 & -1 \end{bmatrix}
$$

\n
$$
[3-1]^2 = \begin{bmatrix} 1 & 1 \ -1 & 1-2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \ 0 & -1 \end{bmatrix}
$$

\n
$$
[3-1]^2 = \begin{bmatrix} 1 & 1 \ -1 & 1-2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \ 0 & -1 \end{bmatrix}
$$

\n
$$
[3-1]^2 = \begin{bmatrix} 1 & 1 \ 0 & 2 \end{bmatrix}
$$

\n
$$
[3-1]^2 = \begin{bmatrix} 1 & 1 \ -1 & 0 \end{bmatrix}
$$

\n
$$
[3-1]^2 = \begin{bmatrix} 1 & 1 \ 0 & 2 \end{bmatrix}
$$

\n
$$
[
$$

(ii)
$$
\begin{bmatrix} 1 & 2 \end{bmatrix} \begin{bmatrix} 5 \ -3 \end{bmatrix}
$$

\nSol. $= \begin{bmatrix} 1 & 2 \end{bmatrix} \begin{bmatrix} 5 \ -4 \end{bmatrix} \end{bmatrix}$
\n $= \begin{bmatrix} (1)(5) + (2)(-4) \end{bmatrix}$
\n $= [5 - 8]$
\n $= [-3]$
\n(iii) $[-3 \quad 0] \begin{bmatrix} 4 \ 0 \end{bmatrix}$
\nSol. $= \begin{bmatrix} -3 & 0 \end{bmatrix} \begin{bmatrix} 4 \ 0 \end{bmatrix} \end{bmatrix}$
\n $= [(-3)(4) + (0)(0)]$
\n $= [-12 + 0]$
\n $= [-12]$
\n(iv) $\begin{bmatrix} 6 & -0 \end{bmatrix} \begin{bmatrix} 4 \ 0 \end{bmatrix}$
\nSol. $= \begin{bmatrix} 6 & -0 \end{bmatrix} \begin{bmatrix} 4 \ -0 \end{bmatrix} \end{bmatrix}$
\n $= \begin{bmatrix} 124 - 0 \end{bmatrix}$
\n(v) $\begin{bmatrix} 1 & 2 \ -3 & 0 \end{bmatrix} \begin{bmatrix} 4 & 5 \ 0 & -4 \end{bmatrix}$
\nSol. $= \begin{bmatrix} 1 & 2 \ -3 & 0 \end{bmatrix} \begin{bmatrix} 4 & 5 \ 0 & -4 \end{bmatrix}$
\nSol. $= \begin{bmatrix} (1)(4) + (2)(0) & (1)(5) + (2)(-4) \ (-3)(4) + (0)(0) & (-3)(5) + (0)(-4) \end{bmatrix}$
\n $= \begin{bmatrix} (1)(4) + (2)(0) & (1)(5) + (2)(-4) \ -2(4) & 30+4 \end{bmatrix} = \begin{bmatrix} 4 & -3 \ -12 & -15 \ 24 & 34 \end{bmatrix}$
\nQ.4: Multiply the following matrices.
\n(a) $\begin{bmatrix} 2 & 3 \ 1 & 1 \ 0 & -2 \end{bmatrix} \begin{bmatrix} 2 & -1 \ 3 & 0 \end{bmatrix}$
\nSol. $= \begin{bmatrix} 2 & 3 \$

$$
= \begin{bmatrix} 4+9 & -2+0 \ 2+3 & -1+0 \ 0-6 & 0+0 \ \end{bmatrix}
$$

\n
$$
= \begin{bmatrix} 13 & -2 \ 5 & -1 \ -6 & 0 \ \end{bmatrix}
$$

\n4. (b) $\begin{bmatrix} 1 & 2 & 3 \ 4 & 5 & 6 \ \end{bmatrix} \begin{bmatrix} 1 & 2 \ 3 & 4 \ -1 & 1 \ \end{bmatrix}$
\nSol. $= \begin{bmatrix} 1 & 2 & 3 \ 4 & 5 & 6 \ \end{bmatrix} \begin{bmatrix} 1 & 2 \ 3 & 4 \ -1 & 1 \ \end{bmatrix}$
\n
$$
= \begin{bmatrix} (1)(1)+(2)(3)+(3)(-1)+(1)(2)+(2)(4)+(3)(1)) \ (4)(1)+(5)(3)+(6)(-1)+(4)(2)+(5)(4)+(6)(1)] \end{bmatrix}
$$

\n
$$
= \begin{bmatrix} 1+6-3 & 2+8+3 \ 4+15-6 & 8+20+6 \ \end{bmatrix}
$$

\n
$$
= \begin{bmatrix} 4 & 13 \ 13 & 34 \ \end{bmatrix}
$$

\n4.(c) $\begin{bmatrix} 1 & 2 \ 3 & 4 \ 3 & 4 \ \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \ 4 & 5 & 6 \ \end{bmatrix}$
\nSol. $= \begin{bmatrix} \frac{1}{3} & \frac{2}{4} \\ \frac{3}{5} & \frac{4}{4} \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \ 4 & 5 & 6 \ \end{bmatrix}$
\nSol. $= \begin{bmatrix} \frac{1}{3} & \frac{2}{4} \\ \frac{3}{5} & \frac{4}{4} \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \ 4 & 5 & 6 \ \end{bmatrix}$
\n
$$
= \begin{bmatrix} (1)(1)+(2)(4) & (1)(2)+(2)(5) & (1)(3)+(2)(6) \ ((-1)(1)+(1)(4) & (-1)(2)+(1)(5) & (3)(3)+(4)(6) \ ((-1)(1)+(1)(4) & (-1)(2)+(1)(5) & (3)(3)+(4)(6) \ ((-1)(1)+(1)(4) &
$$

$$
=\begin{bmatrix} 16-20 & -20+20 \\ 12-16 & -15+16 \end{bmatrix}
$$

\n
$$
=\begin{bmatrix} -4 & 0 \\ -4 & 1 \end{bmatrix}
$$

\n4. (e)
$$
\begin{bmatrix} -1 & 2 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}
$$

\nSoI.
$$
=\begin{bmatrix} -1 & 2 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}
$$

\n
$$
=\begin{bmatrix} (-1)(0)+(2)(0) & (-1)(0)+(2)(0) \\ (1)(0)+(3)(0) & (1)(0)+(3)(0) \end{bmatrix}
$$

\n
$$
=\begin{bmatrix} 0+0 & 0+0 \\ 0+0 & 0+0 \end{bmatrix}
$$

\n
$$
=\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}
$$

\nQ.5: Let A = $\begin{bmatrix} -1 & 3 \\ 2 & 0 \end{bmatrix}$, B = $\begin{bmatrix} 1 & 2 \\ -3 & -5 \end{bmatrix}$ and
\nC = $\begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix}$ verify that:
\n(i) AB = BA It is called commutative law
\nw.r.t multiplication.
\nNote: In Matrices this law does not hold
\ngenerally. i.e AB ≠ BA
\nSoI. AB = BA
\nL.H.S

$$
AB = \left[\begin{array}{c} \overrightarrow{-1} & 3 \\ \overrightarrow{2} & 0 \end{array}\right] \left[\begin{array}{ccc} 1 & 2 \\ -3 & -5 \end{array}\right] \downarrow
$$

\n
$$
AB = \left[\begin{array}{c} (-1)(1) + (3)(-3) & (-1)(2) + (3)(-5) \\ (2)(1) + (0)(-3) & (2)(2) + (0)(-5) \end{array}\right]
$$

\n
$$
AB = \left[\begin{array}{cc} -1-9 & -2-15 \\ 2-0 & 4-0 \end{array}\right]
$$

\n
$$
AB = \left[\begin{array}{cc} -10 & -17 \\ 2 & 4 \end{array}\right]
$$

\n**R.H.S**
\n
$$
BA = \left[\begin{array}{cc} 1 & 2 \\ -3 & -5 \end{array}\right] \left[\begin{array}{cc} -1 & 3 \\ 2 & 0 \end{array}\right]
$$

\n
$$
BA = \left[\begin{array}{cc} (1)(-1) + (2)(2) & (1)(3) + (2)(0) \\ (-3)(-1) + (-5)(2) & (-3)(3) + (-5)(0) \end{array}\right]
$$

\n
$$
BA = \left[\begin{array}{cc} -1+4 & 3+0 \\ 3-10 & -9-0 \end{array}\right]
$$

\n**BA**
$$
= \left[\begin{array}{cc} 3 & 3 \\ -7 & -9 \end{array}\right]
$$

\n**Hence proved** $AB \neq BA$

 (Ai) $A(BC) = (AB)C$ **Sol.** Associative law of Multiplication $A(BC) = (AB)C$ **L.H.S.** Firstly $BC = \begin{bmatrix} \end{bmatrix}$ $\begin{bmatrix} 1 & 2 \\ 3 & -5 \end{bmatrix}$ -3 -5] $\overline{ }$ 」 2 1] 1 3 $BC = \begin{bmatrix} \end{bmatrix}$ 」 $(1)(2)+(2)(1)$ $(1)(1)+(2)(3)$ $(-3)(2)+(-5)(1)$ $(-3)(1)+(-5)(3)$ $BC = \begin{bmatrix} \end{bmatrix}$ 2+2 $1+6$
5-5 -3-15 $-6-5$ $-3-15$ $BC = \begin{bmatrix} \end{bmatrix}$ $\begin{bmatrix} 4 & 7 \\ 1 & -18 \end{bmatrix}$ $-11 -18$ $A(BC) = \begin{bmatrix} \end{bmatrix}$ $\begin{bmatrix} -1 & 3 \\ 2 & 0 \end{bmatrix}$ $\begin{bmatrix} -1 & 3 \\ 2 & 0 \end{bmatrix}$ $\begin{bmatrix} 4 & 7 \\ 1 & -18 \end{bmatrix}$ $-11 -18$ $A(BC) = \begin{bmatrix} \end{bmatrix}$ ╛ $(-1)(4)+(3)(-11)$ $(-1)(7)+(3)(-18)$ $(2)(4)+(0)(-11)$ $(2)(7)+(0)(-18)$ $A(BC) = \begin{bmatrix} \end{bmatrix}$ $\begin{bmatrix} -4-33 & -7-54 \\ 8-0 & 14-0 \end{bmatrix}$ $8 - 0$ 14-0 $A(BC) = \begin{bmatrix} \end{bmatrix}$ $\begin{bmatrix} -37 & -61 \\ 8 & 14 \end{bmatrix}$ 8 14 **R.H.S.** $AB = \begin{bmatrix} \end{bmatrix}$ $\begin{bmatrix} -1 & 3 \\ 2 & 0 \end{bmatrix}$ $\begin{bmatrix} -1 & 3 \\ 2 & 0 \end{bmatrix}$ $\begin{bmatrix} 1 & 2 \\ 3 & -5 \end{bmatrix}$ -3 -5 $AB = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ 」 $(-1)(1)+(3)(-3)$ $(-1)(2)+(3)(-5)$ $(2)(1)+(0)(-3)$ $(2)(2)+(0)(-5)$ $AB = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ $\begin{bmatrix} -1 - 9 & -2 - 15 \\ 2 - 0 & 4 - 0 \end{bmatrix}$ $\begin{bmatrix} -9 & -2-15 \\ 2-0 & 4-0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 4-0 \end{bmatrix}$ $\begin{bmatrix} -10 & -17 \\ 2 & 4 \end{bmatrix}$ 2 4 $(AB)C = \begin{bmatrix} \end{bmatrix}$ $\begin{bmatrix} -10 & -17 \\ 2 & 4 \end{bmatrix}$ 2 4 \vert $\overline{ }$ 」 2 1] 1 3 $(AB)C = \begin{bmatrix}$ 」 $(-10)(2)+(-17)(1)$ $(-10)(1)+(-17)(3)$ $(2)(2)+(4)(1)$ $(2)(1)+(4)(3)$ $(AB)C = \begin{bmatrix} \end{bmatrix}$ $\begin{bmatrix} -20-17 & -10-51 \\ 4+4 & 2+12 \end{bmatrix}$ 4+4 2+12 $(AB)C = \begin{bmatrix} \end{bmatrix}$ $\begin{bmatrix} -37 & -61 \ 8 & 14 \end{bmatrix}$ **8 14 Hence proved L.H.S = R.H.S** (iii) $A(B+C) = AB + AC$ **Sol. Distributive Law of Multiplication over addition. L.H.S.** $A(B+C)$ $B + C =$ $\begin{bmatrix} 1 & 2 \\ 3 & -5 \end{bmatrix}$ $\begin{bmatrix} 1 & 2 \\ -3 & -5 \end{bmatrix}$ + 」 2 1] 1 3 $B + C =$ $\begin{bmatrix} 1+2 & 2+1 \\ 3+1 & -5+3 \end{bmatrix}$ $-3+1$ $-5+3$ $B + C =$ $\begin{bmatrix} 3 & 3 \\ 2 & -2 \end{bmatrix}$ -2 -2

 \overline{a}

A(B + C) =
$$
\begin{bmatrix} -1 & 3 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} 3 & 3 \\ -2 & -2 \end{bmatrix}
$$

\nA(B + C) = $\begin{bmatrix} (-1)(3)+(3)(-2) & (-1)(3)+(3)(-2) \\ (2)(3)+(0)(-2) & (2)(3)+(0)(-2) \end{bmatrix}$
\nA(B + C) = $\begin{bmatrix} -3-6 & -3-6 \\ 6-0 & 6-0 \end{bmatrix}$
\nA(B + C) = $\begin{bmatrix} -9 & -9 \\ 6 & 6 \end{bmatrix}$
\nR.H.S
\nAB = $\begin{bmatrix} -1 & 3 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ -3 & -5 \end{bmatrix}$
\nAB = $\begin{bmatrix} (-1)(1)+(3)(-3) & (-1)(2)+(3)(-5) \\ (2)(1)+(0)(-3) & (2)(2)+(0)(-5) \end{bmatrix}$
\nAB = $\begin{bmatrix} -1-9 & -2-15 \\ 2-0 & 4-0 \end{bmatrix}$ = $\begin{bmatrix} -10 & -17 \\ 2 & 4 \end{bmatrix}$
\nAC = $\begin{bmatrix} -1 & 3 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix}$
\nAC = $\begin{bmatrix} -1 & 3 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix}$
\nAC = $\begin{bmatrix} -1 & 3 \\ 2 & 4 \end{bmatrix}$
\nAB + AC = $\begin{bmatrix} -10 & -17 \\ 2 & 4 \end{bmatrix} + \begin{bmatrix} 1 & 8 \\ 2 & 4 \end{bmatrix}$
\nAB + AC = $\begin{bmatrix} -10 & -17 \\ 2 & 4 \end{bmatrix} + \begin{bmatrix} 1 & 8 \\ 2 & 4 \end{bmatrix}$
\nAB + AC = $\begin{bmatrix} -9 & -9 \\ 6 & 6 \end{bmatrix}$
\nHence proved L.H.S = R.H.S
\n(iv) A(B - C) = AB - AC
\nSoI. Distributive Law of Multiplication over Subtraction.
\nL.H.S.
\nA(B - C)
\nB - C = \begin

$$
A(B-C) = \begin{bmatrix} 1-12 & -1-24 \ -2-0 & 2-0 \end{bmatrix}
$$

\n
$$
A(B-C) = \begin{bmatrix} -11 & -25 \ -2 & 2 \end{bmatrix}
$$

\n**R.H.S:**
\n
$$
AB - AC
$$

\n
$$
AB = \begin{bmatrix} -1 & 3 \ 2 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 \ -3 & -5 \end{bmatrix}
$$

\n
$$
AB = \begin{bmatrix} (-1)(1)+(3)(-3) & (-1)(2)+(3)(-5) \ (2)(1)+(0)(-3) & (2)(2)+(0)(-5) \end{bmatrix}
$$

\n
$$
AB = \begin{bmatrix} -1-9 & -2-15 \ 2-0 & 4-0 \end{bmatrix}
$$

\n
$$
AB = \begin{bmatrix} -10 & -17 \ 2 & 4 \end{bmatrix}
$$

\n
$$
AC = \begin{bmatrix} -1 & 3 \ 2 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1 \ 1 & 3 \end{bmatrix}
$$

\n
$$
AC = \begin{bmatrix} (-1)(2)+(3)(1) & (-1)(1)+(3)(3) \ (2)(2)+(0)(1) & (2)(1)+(0)(3) \end{bmatrix}
$$

\n
$$
AC = \begin{bmatrix} 1 & 8 \ 4 & 2 \end{bmatrix}
$$

\n
$$
AB - AC = \begin{bmatrix} -10 & -17 \ 2 & 4 \end{bmatrix} - \begin{bmatrix} 1 & 8 \ 4 & 2 \end{bmatrix}
$$

\n
$$
AB - AC = \begin{bmatrix} -10-1 & -17-8 \ 2-4 & 4-2 \end{bmatrix}
$$

\n
$$
AB - AC = \begin{bmatrix} -11 & -25 \ -2 & 2 \end{bmatrix}
$$

\nHence proved L.H.S =R.H.S
\n**Q.6:** For the matrices $A = \begin{bmatrix} -1 & 3 \ 2 & 0 \end{bmatrix}$,
\n $B = \begin{bmatrix} 1 & 2 \ -3 & -5 \end{bmatrix}$, $C = \begin{bmatrix} -2 & 6 \ 3 & -9 \end{bmatrix}$
\nverify that:
\n(i) $($

18 www.starshighschool.edu.pk

 \rfloor

 $(2)(-1)+(0)(-4)$ $(2)(1)+(0)(-8)$

$$
AB = \begin{bmatrix} -10 & -17 \\ 2 & 4 \end{bmatrix}
$$

\n
$$
(AB)^{t} = \begin{bmatrix} -10 & -17 \\ 2 & 4 \end{bmatrix}^{t}
$$

\n
$$
(AB)^{t} = \begin{bmatrix} -10 & 2 \\ -17 & 4 \end{bmatrix}
$$

\n
$$
R.H.S = B^{t}A^{t}
$$

\n
$$
B = \begin{bmatrix} 1 & 2 \\ -3 & -5 \end{bmatrix}, A = \begin{bmatrix} -1 & 3 \\ 2 & 0 \end{bmatrix},
$$

\n
$$
B^{t} = \begin{bmatrix} 1 & -3 \\ 2 & -5 \end{bmatrix}, A^{t} = \begin{bmatrix} -1 & 2 \\ 3 & 0 \end{bmatrix}
$$

\n
$$
B^{t}A^{t} = \begin{bmatrix} 1 & -3 \\ 2 & -5 \end{bmatrix} \begin{bmatrix} -1 & 2 \\ 3 & 0 \end{bmatrix}
$$

\n
$$
B^{t}A^{t} = \begin{bmatrix} (1)(-1)+(-3)(3) & (1)(2)+(-3)(0) \\ (2)(-1)+(-5)(3) & (2)(2)+(-5)(0) \end{bmatrix}
$$

\n
$$
B^{t}A^{t} = \begin{bmatrix} -1-9 & 2-0 \\ -2-15 & 4-0 \end{bmatrix}
$$

\n
$$
B^{t}A^{t} = \begin{bmatrix} -10 & 2 \\ -17 & 4 \end{bmatrix}
$$

\nHence proved L.H.S = R.H.S
\n(ii)
$$
(BC)^{t} = C^{t}B^{t}
$$

\nSol.
$$
(BC)^{t} = C^{t}B^{t}
$$

L.H.S

(ii) (BC)^t

$$
BC = \begin{bmatrix} 1 & 2 \\ -3 & -5 \end{bmatrix} \begin{bmatrix} -2 & 6 \\ 3 & -9 \end{bmatrix}
$$

\n
$$
BC = \begin{bmatrix} (1)(-2)+(2)(3) & (1)(6)+(2)(-9) \\ (-3)(-2)+(-5)(3) & (-3)(6)+(-5)(-9) \end{bmatrix}
$$

\n
$$
BC = \begin{bmatrix} -2+6 & 6-18 \\ 6-15 & -18+45 \end{bmatrix}
$$

\n
$$
BC = \begin{bmatrix} 4 & -12 \\ -9 & 27 \end{bmatrix}
$$

\n
$$
(BC)^{t} = \begin{bmatrix} 4 & -12 \\ -9 & 27 \end{bmatrix}
$$

\n
$$
(BC)^{t} = \begin{bmatrix} 4 & -9 \\ -12 & 27 \end{bmatrix}
$$

R.H.S

$$
\mathbf{C}^{\mathbf{t}}\mathbf{B}^{\mathbf{t}}
$$
\n
$$
\mathbf{C}^{\mathbf{t}} = \begin{bmatrix} -2 & 3 \\ 6 & -9 \end{bmatrix}, \ \mathbf{B}^{\mathbf{t}} = \begin{bmatrix} 1 & -3 \\ 2 & -5 \end{bmatrix}
$$
\n
$$
\mathbf{C}^{\mathbf{t}}\mathbf{B}^{\mathbf{t}} = \begin{bmatrix} -2 & 3 \\ 6 & -9 \end{bmatrix} \begin{bmatrix} 1 & -3 \\ 2 & -5 \end{bmatrix}
$$
\n
$$
\mathbf{C}^{\mathbf{t}}\mathbf{B}^{\mathbf{t}} = \begin{bmatrix} (-2)(1) + (3)(2) & (-2)(-3) + (3)(-5) \\ (6)(1) + (-9)(2) & (6)(-3) + (-9)(-5) \end{bmatrix}
$$

Stars Mathematics Notes-IX (Unit-1) Matrices And Determinants

$$
C^{t}B^{t} = \begin{bmatrix} -2+6 & 6-15 \\ 6-18 & -18+45 \end{bmatrix}
$$

$$
C^{t}B^{t} = \begin{bmatrix} 4 & -9 \\ -12 & 27 \end{bmatrix}
$$

Hence proved L.H.S = R.H.S

Determinant:

Let
$$
A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}
$$
 be a 2-by- 2 square matrix.

The determinant of A is denoted by det A or |A| is defined as

$$
|A| = \det A = \det \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{vmatrix} a & b \\ b & d \end{vmatrix} = ad - cb = \lambda \in \mathbb{R}
$$

Example:

B =
$$
\begin{bmatrix} 1 & 3 \\ 2 & -2 \end{bmatrix}
$$

\n**Sol.** $B = \begin{bmatrix} 1 & 3 \\ 2 & -2 \end{bmatrix}$
\n $|B| = \begin{vmatrix} 1 & 3 \\ 2 & -2 \end{vmatrix} = (1)(-2) - (2)(3)$
\n $= -2 - 6 = -8$

Singular matrix:

A square matrix is singular if its determinant is zero.e.g; see $|A| = 0$ $\overline{1}$ \sim 1

$$
|A| = \begin{vmatrix} 3 & 6 \\ 2 & 4 \end{vmatrix} = (3)(4) - (2)(6)
$$

= 12 - 12 = 0

Non-singular matrix:

A square matrix is non-singular if its determinant is not equal to zero. e.g; See $|C| \neq 0$

$$
|C| = \begin{vmatrix} 7 & -9 \\ 3 & 5 \end{vmatrix} = (7)(5) - (3)(-9)
$$

 $= 35 + 27 = 62 \neq 0$ C is a non-singular matrix.

Adjoint of a matrix:

Adjoint of a square matrix
$$
A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}
$$
 is

obtained by interchanging the diagonal entries and changing the signs of other entries Ad joint of matrix A is denoted as Adj A

$$
Adj A = \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}
$$

EXERCISE 1.5

- **Q.1: Find the determinant of the following matrices.**
- **Note: A determinant is denoted by det A or |A|**

(i)
$$
A = \begin{bmatrix} -1 & 1 \ 2 & 0 \end{bmatrix}
$$

\nSol. $A = \begin{bmatrix} -1 & 1 \ 2 & 0 \end{bmatrix}$
\n $|A| = \begin{bmatrix} -1 & 1 \ 2 & 0 \end{bmatrix}$
\n $|A| = (-1)(0) - (2)(1)$
\n $|A| = 0 - 2 = -2$
\n(ii) $B = \begin{bmatrix} 1 & 3 \ 2 & -2 \end{bmatrix}$
\nSol. $B = \begin{bmatrix} 1 & 3 \ 2 & -2 \end{bmatrix}$
\n $|B| = \begin{bmatrix} 1 & 3 \ 2 & -2 \end{bmatrix}$
\n $|B| = (1)(-2) - (2)(3)$
\n $|B| = -2 - 6 = -8$
\n(iii) $C = \begin{bmatrix} 3 & 2 \ 3 & 2 \end{bmatrix}$
\nSol. $C = \begin{bmatrix} 3 & 2 \ 3 & 2 \end{bmatrix}$
\n $|C| = (3)(2) - (3)(2)$
\n $|C| = 6 - 6 = 0$
\n(iv) $D = \begin{bmatrix} 3 & 2 \ 1 & 4 \end{bmatrix}$
\nSol. $|D| = \begin{vmatrix} 3 & 2 \ 1 & 4 \end{vmatrix}$
\nSol. $|D| = (3)(4) - (1)(2)$
\n $|D| = 12 - 2 = 10$
\nQ.2: Find which of the following matrices are singular or non-singular?

$$
|A| = \begin{vmatrix} 3 & 6 \\ 2 & 4 \end{vmatrix}
$$

\n
$$
|A| = (3)(4) - (2)(6)
$$

\n
$$
|A| = 12 - 12 = 0
$$

\nA is a singular matrix because its determinant = 0

(ii)
$$
B = \begin{bmatrix} 4 & 1 \ 3 & 2 \end{bmatrix}
$$

\n**Sol.** $B = \begin{bmatrix} 4 & 1 \ 3 & 2 \end{bmatrix}$
\n $|B| = \begin{bmatrix} 4 & 1 \ 3 & 2 \end{bmatrix}$
\n $|B| = (4)(2) - (3)(1)$
\n $|B| = 8 - 3 \neq 0$
\nB is a non singular matrix because its determinant is $\neq 0$
\n(iii) $C = \begin{bmatrix} 7 & -9 \ 3 & 5 \end{bmatrix}$
\n**Sol.** $C = \begin{bmatrix} 7 & -9 \ 3 & 5 \end{bmatrix}$
\n $|C| = (7)(5) - (3)(-9)$
\n $|C| = 35 + 27 = 62$
\nC is a non-singular matrix because its determinant is $\neq 0$
\n(iv) $D = \begin{bmatrix} 5 & -10 \ -2 & 4 \end{bmatrix}$
\n**Sol.** $D = \begin{bmatrix} 5 & -10 \ -2 & 4 \end{bmatrix}$
\n $|D| = (5)(4) - (-2)(-10)$
\n $|D| = 20 - 20 = 0$
\nD is a singular matrix because its determinant=0
\n**Q.3: Find the multiplicative inverse (if it exists) of each.**
\n(i) $A = \begin{bmatrix} -1 & 3 \ 2 & 0 \end{bmatrix}$
\n**Sol.** $A = \begin{bmatrix} -1 & 3 \ 2 & 0 \end{bmatrix}$
\n $|A| = \begin{bmatrix} -1 & 3 \ -2 & 0 \end{bmatrix}$
\n $|A| = (-1)(0) - (2)(3)$
\n $|A| = 0 - 6 = -6 \neq 0$
\nA is a Non-singular matrix so solution possible.
\nAdj $A = \begin{bmatrix} 0 & -3 \ -2 & -1 \end{bmatrix}$

 -2 -1

$$
A^{-1} = \frac{Adj A}{|A|} = \frac{\begin{bmatrix} 0 & -3 \\ -2 & -1 \end{bmatrix}}{-6}
$$

\n
$$
A^{-1} = -\frac{1}{6} \begin{bmatrix} 0 & -3 \\ -2 & -1 \end{bmatrix}
$$

\n
$$
A^{-1} = \begin{bmatrix} \frac{1}{6}(0) & \frac{1}{6}(0) & \frac{1}{6}(0) \\ \frac{1}{6}(0) & \frac{1}{6}(0) & \frac{1}{6}(0) \end{bmatrix}
$$

\n
$$
A^{-1} = \begin{bmatrix} 0 & \frac{1}{2} \\ \frac{1}{3} & \frac{1}{6} \end{bmatrix}
$$

\n(ii)
$$
B = \begin{bmatrix} 1 & 2 \\ -3 & -5 \end{bmatrix}
$$

\nSoI.
$$
B = \begin{bmatrix} 1 & 2 \\ -3 & -5 \end{bmatrix}
$$

\n
$$
|B| = \begin{bmatrix} 1 & 2 \\ -3 & -5 \end{bmatrix}
$$

\n
$$
|B| = (1)(-5) - (-3)(2)
$$

\n
$$
|B| = -5 + 6
$$

\n
$$
= 1 \neq 0
$$

B is a Non singular matrix so solution possible.

Adj B $=$ $\begin{bmatrix} -5 & -2 \\ 3 & 1 \end{bmatrix}$ 3 1 $B^{-1} =$ **Adj B |B|** $B^{-1} =$ $\overline{\mathsf{L}}$ $\begin{bmatrix} -5 & -2 \\ 3 & 1 \end{bmatrix}$ 3 1 1 $\mathbf{B}^{-1} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ $\begin{bmatrix} -5 & -2 \\ 3 & 1 \end{bmatrix}$ **3 1** (iii) $C = \begin{bmatrix} \end{bmatrix}$ $\begin{bmatrix} -2 & 6 \ 3 & -9 \end{bmatrix}$ **3 9 Sol.** $C = \begin{bmatrix} \end{bmatrix}$ $\begin{bmatrix} -2 & 6 \\ 3 & -9 \end{bmatrix}$ $3 - 9$ $|C| =$ $\begin{vmatrix} -2 & 6 \\ 3 & -9 \end{vmatrix}$ $3 - 9$ $|C| = (-2)(-9) - (3)(6)$ $|C| = 18 - 18 = 0$ C is singular matrix so multiplicative inverse does not exists.

(iv)
$$
\mathbf{D} = \begin{bmatrix} \frac{1}{2} & \frac{3}{4} \\ 1 & 2 \end{bmatrix}
$$

\n**Sol.** $\mathbf{D} = \begin{bmatrix} \frac{1}{2} & \frac{3}{4} \\ 1 & 2 \end{bmatrix}$
\n|D| $\mathbf{D} = \begin{vmatrix} \frac{1}{2} & \frac{3}{4} \\ 1 & 2 \end{vmatrix}$
\n|D| $\mathbf{D} = \begin{pmatrix} \frac{1}{2} & 2 \\ \frac{1}{2} & 2 \end{pmatrix}$
\n|D| $\mathbf{D} = \begin{pmatrix} \frac{1}{2} & 2 & -1 \\ \frac{1}{2} & \frac{1}{2} & 2 \end{pmatrix}$
\n|D| $\mathbf{D} = \begin{pmatrix} \frac{1}{2} & 2 & -1 \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{pmatrix}$
\n|D| $\mathbf{D} = \frac{4-3}{4} = \frac{1}{4} \neq \mathbf{0}$

D is a Non singular matrix so solution possible.

$$
D = \begin{bmatrix} \frac{1}{2} & \frac{3}{4} \\ 1 & 2 \end{bmatrix}
$$

Adj $D = \begin{bmatrix} 2 & \frac{-3}{4} \\ -1 & \frac{1}{2} \end{bmatrix}$

$$
D^{-1} = \frac{Adj D}{|D|}
$$

$$
D^{-1} = \frac{\begin{vmatrix} 2 & -\frac{3}{4} \\ -1 & \frac{1}{2} \end{vmatrix}}{\begin{vmatrix} \frac{1}{4} \\ -1 & \frac{1}{2} \end{vmatrix}}
$$

$$
D^{-1} = 4 \begin{bmatrix} 2 & -\frac{3}{4} \\ -1 & \frac{1}{2} \end{bmatrix}
$$

$$
D^{-1} = \begin{bmatrix} (4)(2) & (4)(\frac{-3}{4}) \\ (-1)(4) & (\frac{1}{2})(4) \end{bmatrix}
$$

$$
D^{-1} = \begin{bmatrix} 8 & -3 \\ -4 & 2 \end{bmatrix}
$$

Q.4: If A =
$$
\begin{bmatrix} 1 & 2 \ 4 & 6 \end{bmatrix}
$$
 and B = $\begin{bmatrix} 3 & -1 \ 2 & -2 \end{bmatrix}$ then
\n(i) A(Adj A) = (Adj A)A = (det A)I
\n(ii) BB⁻¹ = I = B⁻¹B
\n(i) A(Adj A) = (Adj A)A = (det A)I
\nSol. A = $\begin{bmatrix} 1 & 2 \ 4 & 6 \end{bmatrix}$
\nAdj A = $\begin{bmatrix} 6 & -2 \ -4 & 1 \end{bmatrix}$
\nA(Adj A) = $\begin{bmatrix} 1 & 2 \ 4 & 6 \end{bmatrix} \begin{bmatrix} 6 & -2 \ -4 & 1 \end{bmatrix}$
\nA(Adj A) = $\begin{bmatrix} (1)(6)+(2)(-4) & (1)(-2)+(2)(1) \ (4)(6)+(6)(-4) & (4)(-2)+(6)(1) \end{bmatrix}$
\nA(Adj A) = $\begin{bmatrix} 6-8 & -2+2 \ 2+24 & -8+6 \end{bmatrix}$
\nA(Adj A) = $\begin{bmatrix} -2 & 0 \ 0 & -2 \end{bmatrix}$
\n(Adj A) = $\begin{bmatrix} 6 & -2 \ -(4) (1)+(2)(4) & (6)(2)+(-2)(6) \ (4)(4) & (-4)(2)+(1)(6) \end{bmatrix}$
\nA(Adj A) = $\begin{bmatrix} (-4)(1)+(1)(4) & (-4)(2)+(1)(6) \ (-4)(2)+(1)(6) \end{bmatrix}$
\nA(Adj A) = $\begin{bmatrix} -2 & 0 \ -2+4 & -8+6 \end{bmatrix}$
\nA(Adj A) = $\begin{bmatrix} -2 & 0 \ 1 & 2 \end{bmatrix}$
\n(det A) I $\begin{bmatrix} 1 & 2 \ 1 & 2 \end{bmatrix}$
\n(det A) = $\begin{bmatrix} 1 & 2 \ 4 & 6 \end{bmatrix}$
\n|A| = (1)(6) – (4)(2)
\n|A| = 6 –8 = –2
\n(detA)I = $\begin{bmatrix} (-2)(1) & (-2)(0) \ (-2)(1) \end{bmatrix}$
\n(detA)I = $\begin{b$

 $|B| =$ $\begin{vmatrix} 3 & -1 \\ 2 & -2 \end{vmatrix}$ 2 -2 $= (3)(-2) - (2)(-1) = -6 + 2 = -4 \neq 0$ B is a Non-singular matrix so solution is possible.

$$
Adj B = \begin{bmatrix} -2 & 1 \\ -2 & 3 \end{bmatrix}
$$

\n
$$
B^{-1} = \frac{1}{|B|} Adj B
$$

\n
$$
B^{-1} = \frac{1}{-4} \begin{bmatrix} -2 & 1 \\ -2 & 3 \end{bmatrix}
$$

\n
$$
B^{-1}B = \frac{1}{-4} \begin{bmatrix} -2 & 1 \\ -2 & 3 \end{bmatrix} \begin{bmatrix} 3 & -1 \\ 2 & -2 \end{bmatrix}
$$

\n
$$
B^{-1}B = \frac{1}{-4} \begin{bmatrix} (-2)(3)+(1)(2) & (-2)(-1)+(1)(-2) \\ (-2)(3)+(3)(2) & (-2)(-1)+(3)(-2) \end{bmatrix}
$$

\n
$$
B^{-1}B = \frac{1}{-4} \begin{bmatrix} -6+2 & 2-2 \\ -6+6 & 2-6 \end{bmatrix}
$$

\n
$$
B^{-1}B = \frac{1}{-4} \begin{bmatrix} -4 & 0 \\ 0 & -4 \end{bmatrix}
$$

\n
$$
B^{-1}B = \begin{bmatrix} \frac{-4}{-4} & \frac{0}{-4} \\ \frac{0}{-4} & -\frac{4}{-4} \end{bmatrix}
$$

\n
$$
B^{-1}B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \therefore I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}
$$

\n
$$
I = B^{-1}B
$$

\nL.H.S
\n
$$
BB^{-1} = \frac{1}{-4} \begin{bmatrix} 3 & -1 \\ 2 & -2 \end{bmatrix} \begin{bmatrix} -2 & 1 \\ -2 & 3 \end{bmatrix}
$$

\n
$$
BB^{-1} = \frac{1}{-4} \begin{bmatrix} -6+2 & 3-3 \\ 2(3)(-2)+(1)(-2) & (3)(1)+(-1)(3) \\ -4 & -4 & 2-6 \end{bmatrix}
$$

\n
$$
BB^{-1} = \frac{1}{-4} \begin{bmatrix} -4 & 0 \\ 0 & -4 \end{bmatrix}
$$

\n
$$
BB^{-1} = \begin{bmatrix} \frac{-4}{-4} & \frac{0}{-4} \\ \frac{0}{-4
$$

Q.5: Determine whether the given matrices are multiplicative inverses of each other.

(i)
$$
\begin{bmatrix} 3 & 5 \\ 4 & 7 \end{bmatrix}
$$
 and $\begin{bmatrix} 7 & -5 \\ -4 & 3 \end{bmatrix}$
\nSol. $= \begin{bmatrix} 3 & 5 \\ 4 & 7 \end{bmatrix} \begin{bmatrix} 7 & -5 \\ -4 & 3 \end{bmatrix}$
\n $= \begin{bmatrix} (3)(7)+(5)(-4) & (3)(-5)+(5)(3) \\ (4)(7)+(7)(-4) & (4)(-5)+(7)(3) \end{bmatrix}$
\n $= \begin{bmatrix} 21-20 & -15+15 \\ 28-28 & -20+21 \end{bmatrix}$
\n $= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$

So both matrices are multiplicative inverse of each other.

(ii)
$$
\begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}
$$
 and $\begin{bmatrix} -3 & 2 \\ 2 & -1 \end{bmatrix}$
\nSol. $= \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} -3 & 2 \\ 2 & -1 \end{bmatrix}$
\n $= \begin{bmatrix} (1)(-3)+(2)(2) & (1)(2)+(2)(-1) \\ (2)(-3)+(3)(2) & (2)(2)+(3)(-1) \end{bmatrix}$
\n $= \begin{bmatrix} -3+4 & 2-2 \\ -6+6 & 4-3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \Rightarrow I$

So both matrices are multiplicative inverse of each other.

Q.6: If
$$
A = \begin{bmatrix} 4 & 0 \ -1 & 2 \end{bmatrix}
$$
, $B = \begin{bmatrix} -4 & -2 \ 1 & -1 \end{bmatrix}$,
\n $D = \begin{bmatrix} 3 & 1 \ -2 & 2 \end{bmatrix}$ then verify that
\n(i) $(AB)^{-1} = B^{-1}A^{-1}$
\n(ii) $(DA)^{-1} = A^{-1}D^{-1}$
\n(i) $(AB)^{-1} = B^{-1}A^{-1}$
\nSol.
\nL.H.S
\n $AB = \begin{bmatrix} 4 & 0 \ -1 & 2 \end{bmatrix} \begin{bmatrix} -4 & -2 \ 1 & -1 \end{bmatrix} =$
\n $AB = \begin{bmatrix} (4)(-4)+(0)(1) & (4)(-2)+(0)(-1) \ (-1)(-4)+(2)(1) & (-1)(-2)+(2)(-1) \end{bmatrix}$
\n $AB = \begin{bmatrix} -16+0 & -8+0 \ 4+2 & 2-2 \end{bmatrix} = \begin{bmatrix} -16 & -8 \ 6 & 0 \end{bmatrix}$
\n $|AB| = \begin{vmatrix} -16 & -8 \ 6 & 0 \end{vmatrix}$
\n $AB = (-16)(0) - (6)(-8) = 0 + 48$
\n $|AB| = 48$
\n $Adj AB = \begin{bmatrix} 0 & 8 \ -6 & -16 \end{bmatrix}$
\n $(AB)^{-1} = \frac{Adj AB}{|AB|}$

$$
(AB)^{-1} = \frac{\begin{bmatrix} 0 & 8 \\ -6 & -16 \end{bmatrix}}{48}
$$

$$
(AB)^{-1} = \frac{1}{48} \begin{bmatrix} 0 & 8 \\ -6 & -16 \end{bmatrix}
$$

$$
(AB)^{-1} = \begin{bmatrix} \frac{1}{(48)}(0) & \frac{1}{(48)}(8) \\ \frac{1}{(48)}(-6) & \frac{1}{(48)}(-16) \end{bmatrix}
$$

$$
(AB)^{-1} = \begin{bmatrix} 0 & \frac{1}{6} \\ \frac{-1}{8} & \frac{-1}{3} \end{bmatrix}
$$

R.H.S

A =
$$
\begin{bmatrix} 4 & 0 \\ -1 & 2 \end{bmatrix}
$$

\nA = $\begin{bmatrix} 4 & 0 \\ -1 & 2 \end{bmatrix}$
\n|A| = $\begin{bmatrix} 4 & 0 \\ -1 & 2 \end{bmatrix}$
\n|A| = $(4)(2) - (-1)(0)$
\n|A| = 8
\nAdj A = $\begin{bmatrix} 2 & 0 \\ 1 & 4 \end{bmatrix}$
\nA⁻¹ = $\frac{\text{Adj } \textbf{A}}{|\textbf{A}|}$
\nA⁻¹ = $\frac{\begin{bmatrix} 2 & 0 \\ 1 & 4 \end{bmatrix}}{8} = \frac{1}{8} \begin{bmatrix} 2 & 0 \\ 1 & 4 \end{bmatrix}$
\nA⁻¹ = $\begin{bmatrix} (2)(\frac{1}{8}) & (0)(\frac{1}{8}) \\ (1)(\frac{1}{8}) & (4)(\frac{1}{8}) \end{bmatrix}$
\nA⁻¹ = $\begin{bmatrix} \frac{1}{4} & 0 \\ \frac{1}{8} & \frac{1}{2} \end{bmatrix}$
\nB = $\begin{bmatrix} -4 & -2 \\ 1 & -1 \end{bmatrix}$
\n|B| = $\begin{bmatrix} -4 & -2 \\ 1 & -1 \end{bmatrix}$
\n= $(-4)(-1) - (1)(-2)$
\n|B| = $4 + 2 = 6$
\nAdj B = $\begin{bmatrix} -1 & 2 \\ -1 & -4 \end{bmatrix}$
\nB⁻¹ = $\frac{\text{Adj } \textbf{B}}{\textbf{B}}$

 \rfloor $\overline{}$

1 $\frac{1}{64}$)(-2)

 \rfloor $\overline{}$

1 32

11 64

┙

1 $\frac{1}{8}$ $)(0)$

> 1 $\frac{1}{8}$ $)(4)$

 \rfloor $\overline{}$

1 $\frac{1}{64}$ (11)

$$
B^{-1} = \frac{\begin{bmatrix} -1 & 2 \ 0 & 4 \end{bmatrix}}{\begin{bmatrix} 1 & 2 \ 0 & 4 \end{bmatrix}}
$$

\n
$$
B^{-1} = \frac{\begin{bmatrix} -1 & 2 \ 0 & -1 \end{bmatrix}}{\begin{bmatrix} -1 & -2 \ 0 & -1 \end{bmatrix}}
$$

\n
$$
B^{-1} = \begin{bmatrix} \frac{1}{(6)(-1)} & (2)(\frac{1}{(6)} \\ \frac{1}{(6)(-1)} & (-4)(\frac{1}{(6)}) \end{bmatrix}
$$

\n
$$
B^{-1} = \begin{bmatrix} -\frac{1}{6} & \frac{1}{3} \\ -\frac{1}{6} & -\frac{2}{3} \end{bmatrix}
$$

\n
$$
B^{-1}A^{-1} = \begin{bmatrix} -\frac{1}{6} & \frac{1}{3} \\ -\frac{1}{6} & -\frac{2}{3} \end{bmatrix} \begin{bmatrix} \frac{1}{4} & 0 \\ \frac{1}{8} & \frac{1}{2} \end{bmatrix}
$$

\n
$$
B^{-1}A^{-1} = \begin{bmatrix} -\frac{1}{6} & \frac{1}{3} \\ -\frac{1}{6} & -\frac{2}{3} \end{bmatrix} \begin{bmatrix} \frac{1}{8} & 0 \\ \frac{1}{8} & \frac{1}{2} \end{bmatrix}
$$

\n
$$
B^{-1}A^{-1} = \begin{bmatrix} -\frac{1}{6} & \frac{1}{3} \\ -\frac{1}{6} & -\frac{2}{3} \end{bmatrix} \begin{bmatrix} \frac{1}{8} & 0 \\ \frac{1}{8} & \frac{1}{2} \end{bmatrix}
$$

\n
$$
B^{-1}A^{-1} = \begin{bmatrix} -\frac{1}{6} & \frac{1}{3} \\ -\frac{1}{24} & -\frac{2}{24} & 0 -\frac{2}{6} \end{bmatrix}
$$

\n
$$
B^{-1}A^{-1} = \begin{bmatrix} 0 & \frac{1}{6} \\ -\frac{1}{24} & -\frac{2}{24} & 0 -\frac{2}{6} \end{bmatrix}
$$

\n
$$
B^{-1}A^{-1} = \begin{bmatrix} 0 & \frac{1}{6} \\ -\frac{
$$

 $A^{-1} =$ L $\overline{ }$ \overline{a} $\overline{}$ $\overline{}$ $\frac{1}{4}$ 0 $\frac{1}{4}$ 0 1 $\frac{1}{8}$ 1 2 $|D| = |$ $\begin{vmatrix} 3 & 1 \\ -2 & 2 \end{vmatrix}$ -2 2 $|D| = (3)(2) - (-2)(1)$ $|D| = 6 + 2 = 8$ Adj $D = \begin{bmatrix}$ $\begin{bmatrix} 2 & -1 \\ 2 & 3 \end{bmatrix}$ 2 3 D^{-1} = **Adj D |D|** D^{-1} = $\overline{}$ $\begin{bmatrix} 2 & -1 \\ 2 & 3 \end{bmatrix}$ 2 3 8 D^{-1} = L \mathbf{r} $\overline{}$ \rfloor $\overline{}$ $(\frac{1}{8})(2)$ $(\frac{1}{8})(-1)$ $\frac{1}{8}$)(2) (1 $\frac{1}{8}(-1)$ (1 $\frac{1}{8}$ (2) (1 $\frac{1}{8}$ $)(3)$ $D^{-1} =$ L \overline{a} \overline{a} \rfloor $\overline{}$ $\frac{1}{4}$ $-\frac{1}{8}$ $\frac{1}{4}$ – 1 8 1 $\frac{1}{4}$ 3 8 $A^{-1}D^{-1} =$ L \overline{a} \overline{a} $\overline{}$ $\overline{}$ $\frac{1}{4}$ 0 $\frac{1}{4}$ 0 1 $\frac{1}{8}$ 1 $\frac{1}{2}$ | \mathbf{r} $\overline{}$ \rfloor $\overline{}$ $\frac{1}{4}$ $-\frac{1}{8}$ $\frac{1}{4}$ – 1 8 1 $\frac{1}{4}$ 3 8 $A^{-1}D^{-1} =$ L \overline{a} \overline{a} \rfloor $\overline{}$ $\left(\frac{1}{4}(\frac{1}{4})+(\frac{1}{4})\right)\left(\frac{1}{4}\right) = \left(\frac{1}{4}(-\frac{1}{8})+(\frac{1}{8})\right)\left(\frac{3}{8}\right)$ $\frac{1}{4}$)(1 $\frac{1}{4}$)+(0)(1 $\frac{1}{4}$) (1 $\frac{1}{4}$)(-1 $\frac{1}{8}$)+(0)(3 $\frac{5}{8}$ (1 $\frac{1}{8}$)(1 $\frac{1}{4}$)+(1 $\frac{1}{2}$)(1 $\frac{1}{4}$) (1 $\frac{1}{8}$)(-1 $\frac{1}{8}$)+(1 $\frac{1}{2}$)(3 $\frac{2}{8}$ $A^{-1}D^{-1} =$ L \mathbf{r} \mathbf{r} \mathbf{r} \rfloor $\overline{}$ $\overline{}$ $\frac{1}{16}+0$ $\frac{-1}{22}+0$ $\frac{1}{16}+0$ -1 $\frac{1}{32}+0$ 1 $rac{1}{32}$ + 1 $\frac{1}{8}$ -1 $\frac{1}{64}$ + 3 16 $A^{-1}D^{-1} =$ L \mathbf{r} \mathbf{r} \rfloor $\overline{}$ $\frac{1}{16}$ $\frac{-1}{32}$ 32 $\frac{1+4}{32}$ $\frac{-1+12}{64}$ 64 $A^{-1}D^{-1} =$ L \mathbf{r} \vert \rfloor $\overline{}$ $\frac{1}{16}$ $\frac{-1}{32}$ 32 $rac{5}{32}$ $rac{11}{64}$ 64 **Hence proved L.H.S = R.H.S Simultaneous equations:** A system of equation having a common solution is called a system of simultaneous equations $ax+by = m$ $cx+dy = n$

where a, b, c, d, m and n are real number x and y are two variable so these are two variable linear equations

EXERCISE 1.6

Adj $A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$ 」 $\overline{}$ \mathbf{r} L L \overline{a} \overline{a} $=$ 6 2 $5 -1$ *A* $X = A^{-1}B$ $X =$ 1 $\frac{1}{|A|}$ Adj $A \times B$

$$
X = \frac{1}{4} \begin{bmatrix} 5 & -1 \\ -6 & 2 \end{bmatrix} \begin{bmatrix} 3 \\ 1 \end{bmatrix}
$$

\n
$$
X = \frac{1}{4} \begin{bmatrix} (5)(3) + (-1)(1) \\ (-6)(3) + (2)(1) \end{bmatrix}
$$

\n
$$
X = \frac{1}{4} \begin{bmatrix} 15 - 1 \\ -18 + 2 \end{bmatrix}
$$

\n
$$
X = \frac{1}{4} \begin{bmatrix} 14 \\ -18 + 2 \end{bmatrix}
$$

\n
$$
X = \begin{bmatrix} \frac{14}{4} \\ -16 \end{bmatrix}
$$

\n
$$
X = \begin{bmatrix} \frac{7}{4} \\ -16 \end{bmatrix}
$$

\n
$$
X = \begin{bmatrix} \frac{7}{2} \\ -16 \end{bmatrix}
$$

\n
$$
X = \begin{bmatrix} 7 \\ 2 \\ -4 \end{bmatrix}
$$

\n
$$
X = \begin{bmatrix} 7 \\ 2 \\ -4 \end{bmatrix}
$$

\n
$$
X = \begin{bmatrix} 7 \\ 2 \\ -4 \end{bmatrix}
$$

\n
$$
X = \begin{bmatrix} 7 \\ 14 \end{bmatrix} = \begin{bmatrix} 3 \\ -16 \end{bmatrix}
$$
...(i)
\nA
$$
X = B
$$

\n
$$
|A| = (2)(5) - (6)(1)
$$

\n
$$
|A| = 10 - 6
$$

\n
$$
|A| = 4 \neq 0
$$

\nNon-singular matrix so solution is possible
\n
$$
A_x = \begin{bmatrix} 3 & 1 \\ 14 & 5 \end{bmatrix}
$$

\n
$$
X = \frac{|A_x|}{|A|} = \frac{\begin{bmatrix} 3 & 1 \\ 1 & 5 \end{bmatrix}}{|A|} = \frac{(3)(5) - (1)(1)}{4}
$$

\n
$$
X = \frac{7}{2}
$$

\n
$$
A_y = \begin{bmatrix} 2 & 3 \\ 6 & 1 \end{bmatrix}
$$

\n
$$
y = \frac{|A_y|}{|A|} = \frac{\begin{bmatrix} 2 & 3 \\ 6 &
$$

 $y \mid$ L ┙ \mathbf{x}] $\begin{bmatrix} x \\ y \end{bmatrix}$ = L \mathbf{r} \mathbf{r} \mathbf{r} ┘ $\overline{}$ $\overline{}$ 7] 2 -4 **x = 7** $\frac{1}{2}$, y = -4 (iii) $4x + 2y = 8$ $3x - y = -1$ **Sol. By inverse method:** Writing in the matrix form $\overline{}$ $\begin{bmatrix} 4 & 2 \\ -1 \end{bmatrix}$ 3 -1] L ┙ \mathbf{x}] $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $\begin{bmatrix} 8 \\ -1 \end{bmatrix}$ -1 A $X = B$ $|A|$ = $\begin{vmatrix} 4 & 2 \\ -1 \end{vmatrix}$ $3 -1$ $|A| = (4)(-1) - (3)(2)$ $|A| = -4 -6$ $|A| = -10 \neq 0$ Non-singular matrix so solution is possible $X^{\sim} = A^{-1} B$ $X =$ 1 $\frac{1}{|A|}$ Adj $A \times B$ Adj $A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$ $\begin{bmatrix} -3 & 4 \end{bmatrix}$ $\overline{}$ \mathbf{r} L \overline{a} $-1 =$ 3 4 $1 - 2$ *A* $X =$ 1 $\frac{1}{-10}$ $\begin{bmatrix} -1 & -2 \\ -3 & 4 \end{bmatrix}$ -3 4 8 1 $X =$ 1 -10 $(-1)(8) + (-2)(-1)$ $(-3(8) + (4)(-1)$ $X =$ 1 -10 $8 + 2$ $24 - 4$ $X =$ 1 -10 $X = \frac{1}{10}$ 6 10 -28 6 $X = \begin{vmatrix} -10 \\ 20 \end{vmatrix}$ 28 10 3 $X = \begin{bmatrix} 5 \end{bmatrix}$ 14 5 5 $y = \frac{14}{5}$ 5 $x = \frac{3}{x}$, $y =$ **Cramer"s rule** $4 \t2[[x] [8]$ 3 $-1 ||y||^{-} |-1$ $A \tX = B$

$$
|A| = \begin{vmatrix} 4 & 2 \\ 3 & -1 \end{vmatrix}
$$

\n
$$
|A| = (4)(-1) - (3)(2)
$$

\n
$$
|A| = -4 - 6
$$

\n
$$
|A| = -10 \neq 0
$$

\nNon singular matrix so solution is possible
\n
$$
x = \frac{|A_x|}{|A|}
$$

\n
$$
x = \frac{8 + 2}{-10}
$$

\n
$$
x = \frac{-6}{-10}
$$

\n
$$
x = \frac{-6}{5}
$$

\n
$$
y = \frac{|A_y|}{|A|}
$$

\n
$$
Y = \frac{\begin{vmatrix} 4 & 8 \\ 3 & -1 \end{vmatrix}}{-10}
$$

\n
$$
y = \frac{(4)(-1) - (3)(8)}{-10}
$$

\n
$$
y = \frac{-4 - 24}{-10} = \frac{-28}{-10}
$$

\n
$$
y = \frac{14}{5}
$$

\n
$$
x = \frac{3}{5}, y = \frac{14}{5}
$$

\n
$$
x = \frac{3}{5}, y = \frac{14}{5}
$$

\n(iv) $3x - 2y = -6$
\n $5x - 2y = -10$
\nSol. By inverse method
\nWriting in the matrix form
\n
$$
= \begin{bmatrix} 3 & -2 \\ 5 & -2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -6 \\ -10 \end{bmatrix}
$$

\n
$$
A = X = B
$$

\n
$$
|A| = \begin{vmatrix} 3 & -2 \\ 5 & -2 \end{vmatrix}
$$

\n
$$
|A| = -6 + 10 = 4 \neq 0
$$

$$
X = A1B
$$

\n
$$
X = \frac{1}{|A|} Adj A \times B
$$

\n
$$
X = \frac{1}{4} \begin{bmatrix} -2 & 2 \\ -5 & 3 \end{bmatrix} \begin{bmatrix} -6 \\ -10 \end{bmatrix}
$$

\n
$$
X = \frac{1}{4} \begin{bmatrix} (-2)(-6) + (2)(-10) \\ (-5)(-6) + (3)(-10) \end{bmatrix}
$$

\n
$$
X = \frac{1}{4} \begin{bmatrix} 12 - 20 \\ 30 - 30 \end{bmatrix}
$$

\n
$$
X = \frac{1}{4} \begin{bmatrix} -8 \\ 0 \\ 0 \end{bmatrix}
$$

\n
$$
X = \begin{bmatrix} -8 \\ 4 \\ 0 \end{bmatrix}
$$

\n
$$
X = \begin{bmatrix} -2 \\ 0 \\ 4 \end{bmatrix}
$$

\n
$$
X = -2, y = 0
$$

\n**Cramer's Rule**
\n
$$
\begin{bmatrix} 3 & -2 \\ 5 & -2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -6 \\ -10 \end{bmatrix}
$$

\nA $X = B$
\n
$$
|A| = \begin{bmatrix} 3 & -2 \\ 5 & -2 \end{bmatrix}
$$

\n
$$
|A| = 3 -2 - 5 -2 \neq 0
$$

\n
$$
|A| = -6 + 10 = 4
$$

Non singular matrix so solution possible

$$
x = \frac{|Ax|}{|A|}
$$

\n
$$
x = \frac{|-6 - 2|}{4}
$$

\n
$$
x = \frac{(-6)(-2) - (-10)(-2)}{4}
$$

\n
$$
x = \frac{12 - 20}{4}
$$

\n
$$
x = \frac{-8}{4}
$$

\n
$$
x = -2
$$

$$
y = \frac{A y}{A}
$$

\n
$$
y = \frac{3}{5} - \frac{-6}{4}
$$

\n
$$
y = \frac{(3)(-10) - (5)(-6)}{4}
$$

\n
$$
= \frac{-30 + 30}{4}
$$

\n
$$
= \frac{0}{4} = 0
$$

\n
$$
\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -2 \\ 0 \end{bmatrix}
$$
 x=-2, y = 0
\n(v) 3x - 2y = 4
\n-6x + 4y = 7
\nSol. By inverse method:
\nWriting in the matrix form
\n
$$
\begin{bmatrix} 3 & -2 \\ -6 & 4 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 7 \\ 4 \end{bmatrix}
$$

\nA X = B
\n
$$
|A| = \begin{vmatrix} 3 & -2 \\ -6 & 4 \end{vmatrix}
$$

\n= (3)(4) - (-6)(-2)
\n= 12-12=0
\nIt is singular matrix so solution set is impossible
\n(vi) 4x + y = 9
\n-3x - y = -5
\nWriting in the matrix form
\nSol. By inverse method
\n
$$
\begin{bmatrix} 4 & 1 \\ -3 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 9 \\ -5 \end{bmatrix}
$$

\nA X = B
\n
$$
|A| = \begin{vmatrix} 4 & 1 \\ -3 & -1 \end{vmatrix}
$$

\n= (4)(-1) - (-3)(1)
\n= -4 + 3 = -1 \neq 0 Non singular so possible
\nAdj A = $\begin{bmatrix} -1 & -1 \\ 3 & 4 \end{bmatrix}$

3 4

$$
X = \frac{1}{|A|} Adj A \times B
$$

\n
$$
X = \frac{1}{-1} \begin{bmatrix} -1 & -1 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 9 \\ -5 \end{bmatrix}
$$

\n
$$
X = \frac{1}{-1} \begin{bmatrix} (-1)(9) + (-1)(-5) \\ (3)(9) + (4)(-5) \end{bmatrix}
$$

\n
$$
X = \frac{1}{-1} \begin{bmatrix} -9+5 \\ 27-20 \end{bmatrix}
$$

\n
$$
X = \frac{1}{-1} \begin{bmatrix} -4 \\ \frac{1}{7} \\ y \end{bmatrix}
$$

\n
$$
X = \begin{bmatrix} \frac{-4}{1} \\ \frac{1}{7} \\ y \end{bmatrix}
$$

\n
$$
X = 4, y = -7
$$

\n
$$
Cramer's Rule
$$

\n
$$
\begin{bmatrix} 4 & 1 \\ -3 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 9 \\ -5 \end{bmatrix}
$$

\n
$$
A X = B
$$

\n
$$
|A| = \begin{bmatrix} 4 & 1 \\ -3 & -1 \end{bmatrix}
$$

\n
$$
= (4)(-1) - (-3)(1)
$$

\n
$$
= -4 + 3 = -1
$$

\n
$$
= \frac{|Ax|}{|A|}
$$

\n
$$
= \frac{|9 \choose 2(-1) - (-5)(1)}{-1}
$$

\n
$$
= \frac{-9+5}{-1}
$$

\n
$$
= \frac{-4}{-1}
$$

\n
$$
x = 4
$$

\n
$$
y = \frac{|A_y|}{|A|} = \frac{|4 \quad 9|}{-1}
$$

\n
$$
= \frac{(4)(-5) - (-3)(9)}{-1}
$$

$$
\frac{-20+27}{-1} = \frac{7}{-1} \n= -7
$$
\n
$$
\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 4 \\ -7 \end{bmatrix} \nx = 4, y = -7 \n(vii) 2x - 2y = 4 \n-5x - 2y = -10 \nWriting in the matrix form \nSol. By inverse matrix \n
$$
\begin{bmatrix} 2 & -2 \\ -5 & -2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 4 \\ -10 \end{bmatrix} \nA X = B \n|A| = $\begin{vmatrix} 2 & -2 \\ -5 & -2 \end{vmatrix} = (2)(-2) - (-2)(-5) = -4 - 10 = -14$
\nNon singular matrix so solution is possible
\nAdj $A = \begin{bmatrix} -2 & 2 \\ 5 & 2 \end{bmatrix}$
\n**X** = $\begin{bmatrix} -2 & 2 \\ -1 & 10 \end{bmatrix}$
\n**X** = $\begin{bmatrix} -2 & 2 \\ -14 & 5 \end{bmatrix} \begin{bmatrix} 4 \\ 5 & 2 \end{bmatrix} \begin{bmatrix} 4 \\ -10 \end{bmatrix}$
\n**X** = $\begin{bmatrix} 1 \\ -14 & 20 - 20 \end{bmatrix}$
\n**X** = $\begin{bmatrix} \frac{-28}{-14} \\ \frac{-14}{0} \end{bmatrix}$
\n**X** = $\begin{bmatrix} \frac{-28}{-14} \\ \frac{-14}{-14} \end{bmatrix}$
\n**X** = $\begin{bmatrix} \frac{-28}{-14} \\ \frac{-14}{-14} \end{bmatrix}$
\n**X** = $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$
\n**X** = $\begin{bmatrix} 2 & -2 \\ -5 & -2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \begin{bmatrix} 4 \\ -10 \end{bmatrix}$
$$
$$

$$
= (2)(-2) - (-2)(-5)
$$

= -4 - 10 = -14 \neq 0

Non singular matrix so solution possible

$$
x = \frac{Ax}{A}
$$

= $\frac{\begin{vmatrix} 4 & -2 \\ -10 & -2 \end{vmatrix}}{-14}$
= $\frac{(4)(-2)-(-10)(-2)}{-14}$
= $\frac{-8-20}{-14}$
= $\frac{-28}{-14} = 2$
 $y = \frac{|Ay|}{|A|} = \begin{vmatrix} 2 & 4 \\ -5 & -10 \end{vmatrix}$
= $\frac{(2)(-10) - (-5)(4)}{-14}$ $y = 0$
= $\frac{-20 + 20}{-14}$
 $x = 2, y = 0$
(viii) $3x - 4y = 4$
 $x + 2y = 8$

Sol. By inverse method

Writing in the matrix form

$$
\begin{bmatrix} 3 & -4 \ 1 & 2 \end{bmatrix} \begin{bmatrix} x \ y \end{bmatrix} = \begin{bmatrix} 4 \ 8 \end{bmatrix}
$$

A $X = B$

$$
|A| = \begin{vmatrix} 3 & -4 \ 1 & 2 \end{vmatrix} = (3)(2) - (-4)(1) = 6 + 4
$$

= 10 \neq 0 Non singular so possible
Adj $A = \begin{bmatrix} 2 & 4 \ -1 & 3 \end{bmatrix}$

$$
X = A^{-1}B
$$

\n
$$
X = \frac{1}{|A|} Adj A \times B
$$

\n
$$
X = \frac{1}{10} \begin{bmatrix} 2 & 4 \\ -1 & 3 \end{bmatrix} \begin{bmatrix} 4 \\ 8 \end{bmatrix}
$$

\n
$$
X = \frac{1}{10} \begin{bmatrix} (2)(4) + (4)(8) \\ (-1)(4) + (3)(8) \end{bmatrix}
$$

\n
$$
X = \frac{1}{10} \begin{bmatrix} 8+32 \\ -4+24 \end{bmatrix}
$$

\n
$$
X = \begin{bmatrix} 40 \\ \frac{10}{20} \\ \frac{10}{10} \end{bmatrix}
$$

\n
$$
X = \begin{bmatrix} x \\ \frac{1}{20} \\ \frac{1}{20} \end{bmatrix}
$$

\n
$$
[x] = \begin{bmatrix} 4 \\ 1 \\ 2 \end{bmatrix}
$$

\n
$$
[x] = \begin{bmatrix} 4 \\ 1 \\ 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 4 \\ 8 \end{bmatrix}
$$

\n
$$
[x] = \begin{bmatrix} 3 & -4 \\ 1 & 2 \end{bmatrix} [x] = \begin{bmatrix} 4 \\ 8 \end{bmatrix}
$$

\n
$$
[x] = \begin{bmatrix} 4 & -4 \\ 1 & 2 \end{bmatrix} = (3)(2) - (1)(-4) = 6 + 4 = 10
$$

\n
$$
x = \frac{|A_x|}{|A|} = \frac{\begin{vmatrix} 4 & -4 \\ 10 \end{vmatrix}}{10}
$$

\n
$$
= \frac{(4)(2) - (8)(-4)}{10}
$$

\n
$$
= \frac{40^4}{10^4}
$$

\n
$$
y = \frac{|A_y|}{|A|} = \frac{\begin{vmatrix} 3 & 4 \\ 1 & 8 \end{vmatrix}}{10}
$$

\n
$$
= \frac{(3)(8) - (1)(4)}{10} = \frac{20}{10}
$$

\n
$$
y = 2
$$

2: The length of a rectangle is 4 times its width. The perimeter of the rectangle is 150cm. Find the dimensions of the rectangle. Sol. Suppose lengths of rectangle Width= x cm Length= y cm According to given condition $4x = y$ $4x - y = 0$ $2x + 2y=150$ Writing the in matrix form A $X = B$ Where $A = \begin{vmatrix} 1 & 1 \\ 2 & 2 \end{vmatrix}$ \rfloor $\overline{}$ \mathbf{r} L $=\begin{bmatrix} 4 & - \\ 1 & 1 \end{bmatrix}$ 2 2 $4 -1$ $A = \begin{pmatrix} 1 & 1 \\ 2 & 2 \end{pmatrix}, X = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, B = \begin{pmatrix} 1 \\ 150 \end{pmatrix}$ $\overline{}$ $\overline{}$ L L $\vert, B = \vert$ \rfloor $\overline{}$ L L L 150 0 ,*B y x* $=(4)(2) - (2)(-1) = 8 + 2 = 10$ Adj A $=$ $\begin{bmatrix} 2 & 1 \\ -2 & 4 \end{bmatrix}$ -2 4 A^{-1} = Adj A $|A|$ 10 2 4 2 1 1 $\overline{}$ \rfloor $\overline{}$ \mathbf{r} L $\overline{ }$ \overline{a} $A^{-1} =$ = L \mathbf{r} \mathbf{r} \mathbf{r} \rfloor $\overline{}$ $\overline{}$ $\frac{2}{10}$ $\frac{1}{10}$ $\frac{2}{10}$ 1 10 -2 $\frac{2}{10}$ 4 10 $X=A^{-1}B$ $\overline{}$ \rfloor ٦ I L Γ $\overline{}$ $\overline{}$ $\overline{}$ \rfloor ⅂ L L L L Γ $\begin{array}{|c|c|c|c|c|c|c|c|} \hline -2 & 4 & 150 \ \hline \end{array}$ 0 10 4 10 2 10 1 10 2 4 -1 $\lceil x \rceil$ $\lceil 0 \rceil$ 2 2 || y | 150 *x y* $\begin{bmatrix} 4 & -1 \end{bmatrix} \begin{bmatrix} x \end{bmatrix} \begin{bmatrix} 0 \end{bmatrix}$ $\begin{vmatrix} 1 & 1 \\ 2 & 2 \end{vmatrix} \begin{vmatrix} x \\ y \end{vmatrix} = \begin{vmatrix} 0 \\ 150 \end{vmatrix}$ $\begin{bmatrix} 2 & 2 \end{bmatrix} \begin{bmatrix} y \end{bmatrix}$ $\begin{bmatrix} 150 \end{bmatrix}$ 4 -1 2 2 A \overline{a} $=$ $(0) + \frac{1}{10}$ (150) (0) + $\frac{1}{10}$ (150) $\left(\frac{2}{10}\right)(0) + \left(\frac{1}{10}\right)(150)$ $\frac{1}{10}$ $(0) + \frac{1}{10}$ $\frac{2}{2}$ (0) + $\left(\frac{4}{10}\right)$ (150 $\frac{1}{10}$ $(0) + \frac{1}{10}$ $\begin{bmatrix} 0 & 15 \end{bmatrix}$ 0 60 $=\left[\frac{2}{10}(0) + \left(\frac{1}{10}(150)\right)\right]$ $\left[\left(\frac{-2}{10} \right) (0) + \left(\frac{4}{10} \right) (150) \right]$ $=\begin{bmatrix} 0 \\ 0 \end{bmatrix}$

$$
\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 15 \\ 60 \end{bmatrix}
$$

\n $x = 15$ y = 60
\nThus Width = 15cm
\nCramer's Rule
\n $A_x = \begin{bmatrix} 0 & -1 \\ 150 & 2 \end{bmatrix}$
\n $A_y = \begin{bmatrix} 4 & 0 \\ 2 & 150 \end{bmatrix}$
\n $|A| = \begin{vmatrix} 4 & 0 \\ 2 & 2 \end{vmatrix}$
\n $= (4)(2) - (2)(-1) = 8 + 2 = 10 \neq 0$
\n $x = \begin{vmatrix} A_x \\ A \\ A \end{vmatrix}$
\n $= \frac{(0)(2) \cdot (150)(-1)}{10}$
\n $= \frac{0 + 150}{10} = \frac{150}{10}$
\n $X = 15$
\n $y = \frac{|A_y|}{|A|}$
\n $= \frac{\begin{vmatrix} 4 & 0 \\ 2 & 150 \end{vmatrix}}{10}$
\n $= \frac{(4)(150) \cdot (2)(0)}{10} = \frac{600}{10}$
\n $= 60$
\n $x = 15$
\n $y = 60$
\n3: Two sides of a rectangle differ by 3.5cm.
\nFind the dimensions of the rectangle if its perimeter is 67cm.
\nSol. Suppose
\nLength of a rectangle = x cm
\nWidth of a rectangle = y cm
\nAccording to the condition
\n $x - y = 3.5$
\n $2x + 2y = 67$
\nWriting the in matrix form
\n $\begin{bmatrix} 1 & -1 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 3.5 \\ 67 \end{bmatrix}$
\n $A = \begin{bmatrix} 1 & -1 \\ 2 & 2 \end{bmatrix} = (1)(2) - (2)(-1) = 2 + 2 = 4$

$$
Adj A = \begin{bmatrix} 2 & 1 \\ -2 & 1 \end{bmatrix}
$$

\n
$$
A^{-1} = \frac{Adj A}{|A|}
$$

\n
$$
A^{-1} = \frac{\begin{bmatrix} 2 & 1 \\ -2 & 1 \end{bmatrix}}{\begin{bmatrix} 2 & 1 \\ 4 & 4 \end{bmatrix}}
$$

\n
$$
= \begin{bmatrix} \frac{2}{4} & \frac{1}{4} \\ \frac{-2}{4} & \frac{1}{4} \end{bmatrix}
$$

\n
$$
X = A^{-1} B
$$

\n
$$
= \begin{bmatrix} \frac{2}{4} & \frac{1}{4} \\ \frac{-2}{4} & \frac{1}{4} \end{bmatrix} \begin{bmatrix} 3.5 \\ 67 \end{bmatrix}
$$

\n
$$
= \begin{bmatrix} \frac{7}{4} & + \frac{67}{4} \\ \frac{-7}{4} & + \frac{67}{4} \end{bmatrix}
$$

\n
$$
= \begin{bmatrix} \frac{74}{4} \\ \frac{60}{4} \end{bmatrix} = \begin{bmatrix} 18.5 \\ 15 \end{bmatrix}
$$

\n
$$
x = 18.5
$$

\n
$$
y = 15
$$

\nLength = 18.5cm
\n
$$
Width = 15cm
$$

\n
$$
Cramer's Rule
$$

\n
$$
x - y = 3.5
$$

\n
$$
2x + 2y = 67
$$

\n
$$
A = \begin{bmatrix} 1 & -1 \\ 2 & 2 \end{bmatrix}
$$

\n
$$
A_x = \begin{bmatrix} 3.5 & -1 \\ 67 & 2 \end{bmatrix}
$$

\n
$$
A_y = \begin{bmatrix} 1 & 3.5 \\ 2 & 67 \end{bmatrix}
$$

\n
$$
|A| = (1)(2) - (-1)(2)
$$

$$
= 2 + 4
$$

\n
$$
x = \frac{|A_x|}{|A|} = \frac{\begin{vmatrix} 3.5 & -1 \\ 67 & 2 \end{vmatrix}}{4}
$$

\n
$$
x = \frac{(3.5)(2) - (67)(-1)}{4}
$$

\n
$$
x = \frac{7 + 67}{4}
$$

\n
$$
x = \frac{74}{4}
$$

\n
$$
y = \frac{|A_y|}{|A|}
$$

\n
$$
y = \frac{|A_y|}{4}
$$

\n
$$
\frac{(1)(67) - (-2)(3.5)}{4} = \frac{67 - 7}{4}
$$

\n
$$
\frac{60}{4} = 15
$$

\n
$$
x = 18.5, y = 5
$$

\n**4.** The third angle of an isosceles triangle is 16^o less than the sum of the two equal angles. Find three angles of the triangle.
\n**50.** Let x, y be the angles of an isosceles triangle.
\nThen by given condition
\n
$$
y = 2x - 160
$$
 or $2x - 16 = y$
\n
$$
y = 2x - 160
$$
 or $2x - 16 = y$
\n
$$
y = 2x - 160
$$
 or $2x - 16 = y$
\n
$$
y = 180^{\circ}
$$
 (i)
\nSolve: Sum of three angles of A is 1800 matrix from above equations.
\n
$$
\begin{bmatrix} 2 & -1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 16 \\ 180 \end{bmatrix}
$$

\n
$$
A = \begin{bmatrix} 2 & -1 \\ 2 & 1 \end{bmatrix}
$$

\n
$$
= (2)(1) - (2)(-1)
$$

\n
$$
= 2 + 2 = 4 \neq 0
$$

\n
$$
A = \begin{bmatrix} 1 & 1 \\ -2 & 2 \end{bmatrix}
$$

\n
$$
A^{-1} = \frac{Adj A}{|A|}
$$

\n
$$
= \frac{1}{4} \begin{bmatrix} 1 &
$$

X = A⁻¹ × B
\nX =
$$
\frac{1}{|A|}
$$
 Adj A × B
\n= $\frac{1}{4}\begin{bmatrix} 1 & 1 \\ -2 & 2 \end{bmatrix}\begin{bmatrix} 16 \\ 180 \end{bmatrix}$
\n= $\frac{1}{4}\begin{bmatrix} (1)(16) + (1)(180) \\ (-2)(16) + (2)(180) \end{bmatrix}$
\n= $\frac{1}{4}\begin{bmatrix} 16+180 \\ -32+360 \end{bmatrix}$
\n= $\frac{1}{4}\begin{bmatrix} 196 \\ 328 \end{bmatrix}$
\nX = $\begin{bmatrix} \frac{196}{4} \\ \frac{328}{4} \end{bmatrix}$
\nX = $\begin{bmatrix} 49 \\ 82 \end{bmatrix}$
\nX = 49
\nY = 82

So unknown angles are $49^{\circ}, 49^{\circ}$ and 82° **Cramer"s Rule**

$$
X = \frac{|A_x|}{|A|}
$$

\n
$$
X = \frac{\begin{bmatrix} 16 & -1 \\ 180 & 1 \end{bmatrix}}{4} = \frac{(16)(1) - (180)(-1)}{4}
$$

\n
$$
= \frac{16 + 180}{4} = \frac{196}{4} = 49^{\circ}
$$

\n
$$
X = 49^{\circ}
$$

\n
$$
y = \frac{|A_y|}{|A|}
$$

\n
$$
y = \frac{\begin{bmatrix} 2 & 16 \\ 2 & 180 \end{bmatrix}}{4} = \frac{(2)(180) - (16)(2)}{4}
$$

\n
$$
y = \frac{360^{\circ} - 32}{4} = \frac{328}{4} = 82^{\circ}
$$

\nSo unknown angles are 49°, 49° and 82°

5: One acute angle of a right triangle is 12^o more than twice the other acute angle. Find the acute angles of the right triangle.

Sol.
$$
\begin{bmatrix} 2 & -1 \ 1 & 1 \end{bmatrix} \begin{bmatrix} x \ y \end{bmatrix} = \begin{bmatrix} -12 \ 90 \end{bmatrix}
$$

\n $A = \begin{bmatrix} 2 & -1 \ 1 & 1 \end{bmatrix}, X = \begin{bmatrix} x \ y \end{bmatrix}, B = \begin{bmatrix} -12 \ 90 \end{bmatrix}$
\n $|A| = \begin{vmatrix} 2 & -1 \ 1 & 1 \end{vmatrix} = 2 \times 1 - (-1 \times 1) = 2 + 1 = 3$
\n $X = A^{-1}B$
\n $X = \frac{AdjA}{A} \times B$
\n $X = \frac{\begin{bmatrix} 1 & 1 \ -1 & 2 \end{bmatrix} \begin{bmatrix} -12 \ 90 \end{bmatrix}}{3}$
\n $X = \frac{\begin{bmatrix} -12 & +90 \ 12 & +180 \end{bmatrix}}{3} = \frac{\begin{bmatrix} 78 \ 192 \end{bmatrix}}{3}$
\n $= \begin{bmatrix} \frac{78}{3} \ \frac{192}{3} \end{bmatrix}$
\n $\begin{bmatrix} x \ y \end{bmatrix} = \begin{bmatrix} 26 \ 64 \end{bmatrix}$
\n $\Rightarrow x = 26^\circ, y = 64^\circ$
\nSo one acute angle = 26^\circ
\nOther acute angle = 64^\circ
\nCramer's rule
\n $2x-y = -12$
\n $x + y = 90$
\n $|A_x| = 3, A_x = \begin{bmatrix} -12 & -1 \ 90 & 1 \end{bmatrix}$
\n $|A_x| = -12 + 90 = 78$
\n $x = \frac{|A_x|}{|A|} = \frac{78}{3} = 26^\circ$

 $\overline{}$

Now
$$
A_y = \begin{vmatrix} 2 & -12 \\ 1 & 90 \end{vmatrix} = 2 \times 90 - (-12 \times 1)
$$

= 180 + 12 = 192
So $A_y = \frac{|A_y|}{|A|} = \frac{192}{3}$
 $y = 64^\circ$

so one acute angle = 26^o other acute angle = 64^o

6: Two cars that are 600 km apart are moving towards each other. Their speeds differ by 6 km per hour and the cars are 123 km apart after 4 ½ hours. Find the speed of each car.

Sol. Let the 1st speed of car = x km/hr 2 nd speed of car = y km/hr

Difference between speeds =
$$
x - y = 6
$$
.... (i)

Time =
$$
4\frac{1}{2}
$$
 hours = $\frac{9}{2}$ + 123+(y) × $(\frac{9}{2})$
\n $\frac{9}{2} + \frac{9y}{2} = 600 - 123 = 477$
\n $\Rightarrow 9x + 9y = 954$
\n $9(x + y) = 954 \Rightarrow (x + y) = \frac{954}{9} = 106$

 $x+y = 106...$ (ii) The matrix inverse method $x - y = 6$, $x + y$ $= 106$

Sol.

By writting in matrix form of given equation

$$
\begin{bmatrix} 1 & -1 \ 1 & 1 \end{bmatrix} \begin{bmatrix} x \ y \end{bmatrix} = \begin{bmatrix} 6 \ 106 \end{bmatrix}
$$

\nA $X = B$
\n $\Rightarrow X = A^{-1}B$
\nAnd $A^{-1} = \frac{1}{|A|} AdjA$
\n $|A| = \begin{vmatrix} 1 & -1 \ 1 & 1 \end{vmatrix} = (1)(1) - (1)(-1)$
\n $|A| = 1 + 1 = 2$
\nAs $|A| \neq 0$ so solution is possible.
\nAdj $A = \begin{bmatrix} 1 & 1 \ -1 & 1 \end{bmatrix}$
\n $= A^{-1} = \frac{1}{2} \begin{bmatrix} 1 & 1 \ -1 & 1 \end{bmatrix}$

$$
X = \frac{1}{2} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 6 \\ 106 \end{bmatrix}
$$

\n
$$
X = \frac{1}{3} \begin{bmatrix} (1) \times (6) + (1) \times (106) \\ (-1) \times (6) + (1) \times (106) \end{bmatrix}
$$

\n
$$
X = \frac{1}{2} \begin{bmatrix} 6 + 106 \\ -6 + 106 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 112 \\ 100 \end{bmatrix} = \begin{bmatrix} \frac{112}{2} \\ \frac{100}{2} \end{bmatrix}
$$

\n
$$
\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 56 \\ -10 \end{bmatrix}
$$

 $\overline{}$ \rfloor $\overline{}$ L L \mathbf{r} *y x* $=$ 」 56 50

Hence $x = 56$ **,** $y = 50$ **Cramer"s rule**

Sol. By writing in matrix form

 $A = \begin{bmatrix} \end{bmatrix}$ $\begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$ $\begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$, x= $\overline{}$ \mathbf{x} $\begin{bmatrix} x \\ y \end{bmatrix}$, B = $\begin{bmatrix} \end{bmatrix}$ $6\begin{array}{c} \overline{} \\ \overline{} \end{array}$ 106 $|A|$ = $|$ $\begin{vmatrix} 1 & -1 \\ 1 & 1 \end{vmatrix}$ 1 1 $= (1)(1) - (-1)(1)$ $= 1 + 1 = 2$ As $|A| \neq 0$ so solution is possible. Now $|A_x| =$ $\begin{array}{c|c} 6 & -1 \\ \hline 106 & 1 \end{array}$ 106 1 \Rightarrow $|A_x|$ = $|$ $\begin{vmatrix} 6 & -1 \\ 106 & 1 \end{vmatrix}$ 106 1 $= (6)(1) - (-1) (106)$ $= 6+106=112$ A_y = $\Big|$ \mathbf{I} $1 \quad 6$ 1 106 \Rightarrow $|A_y|$ = $|$ \mathbf{I} $1 \quad 6$ 1 106 $= (1)(106) - (1)(6)$ $= 106 - 6 = 100$ $x =$ *A* $\left. \frac{A_x}{A} \right| =$ 112 $\frac{12}{2}$ =56 and $x = \frac{|y|}{|y|} = \frac{100}{2} = 100$ 2 $=\frac{100}{2}$ = *A Ay* **So, x = 56, y = 100**

following:

(i) The order of matrix [2 1] is

(a)
$$
2-by-1
$$
 (b) $1-by-2$
\n(c) $1-by-1$ (d) $2-by-2$
\n(ii) $\begin{bmatrix} \sqrt{2} & 0 \\ 0 & \sqrt{2} \end{bmatrix}$ is called matrix
\n(a) zero (b) unit
\n(c) scalar (d) singular
\n(iii) Which is order of square matrix
\n(a) $2-by-2$ (b) $-by-2$
\n(c) $2-by-1$ (d) $3-by-2$
\n(iv) Order of transpose of $\begin{bmatrix} 2 & 1 \\ 0 & 1 \\ 3 & 2 \end{bmatrix}$ is
\n(a) $3-by 2$ (b) $2-by-3$
\n(c) $1-by-3$ (d) $3-by-1$
\n(v) Adjoint of $\begin{bmatrix} 1 & 2 \\ 0 & -1 \end{bmatrix}$ is
\n(a) $\begin{bmatrix} -1 & -2 \\ 0 & 1 \end{bmatrix}$ (b) $\begin{bmatrix} 1 & -2 \\ 0 & -1 \end{bmatrix}$
\n(c) $\begin{bmatrix} -1 & 2 \\ 0 & -1 \end{bmatrix}$ (d) $\begin{bmatrix} -1 & 0 \\ 2 & 1 \end{bmatrix}$
\n(ii) Product of $\begin{bmatrix} x & y \end{bmatrix}$ $\begin{bmatrix} 2 \\ -1 \end{bmatrix}$ is
\n(a) $\begin{bmatrix} 2x + y \end{bmatrix}$ (b) $\begin{bmatrix} x - 2y \end{bmatrix}$
\n(c) $\begin{bmatrix} 2x - y \end{bmatrix}$ (d) $\begin{bmatrix} x + 2y \end{bmatrix}$
\n(vii) If $\begin{bmatrix} 2 & 6 \\ 3 & x \end{bmatrix} = 0$, then x is equal to
\n(a) 9 (b) -6
\n(viii) If $X + \begin{bmatrix} -1 & -2 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ then x
\nequal to
\n(a) $\begin{bmatrix} 2 & 2 \\ 2 & 0 \end{bmatrix}$ (b) $\begin{bmatrix} 0 & 2 \\$

arshighschool.edu.pk 35

(ii)
$$
-3A + 2B
$$

\n**Sol.** $= -3\begin{bmatrix} 2 & 3 \ 1 & 0 \end{bmatrix} + 2\begin{bmatrix} 5 & -4 \ -2 & -1 \end{bmatrix}$
\n $= \begin{bmatrix} -6 & -9 \ -3 & 0 \end{bmatrix} + \begin{bmatrix} 10 & -8 \ -4 & -2 \end{bmatrix}$
\n $= \begin{bmatrix} -6+10 & -9-8 \ -3-4 & 0-2 \end{bmatrix}$
\n $= \begin{bmatrix} 4 & -17 \ -7 & -2 \end{bmatrix}$
\n(iii) $-3(A + 2B)$
\n**Sol.** $-3(A + 2B) = -3\begin{bmatrix} 2 & 3 \ 1 & 0 \end{bmatrix} + 2\begin{bmatrix} 5 & -4 \ -2 & -1 \end{bmatrix}$
\n $= -3\begin{bmatrix} 2+10 & 3-8 \ 1-4 & 0-2 \end{bmatrix}$
\n $= -3\begin{bmatrix} 12 & -5 \ 1-4 & 0-2 \end{bmatrix}$
\n $-3(A + 2B) = \begin{bmatrix} -36 & 15 \ 9 & 6 \end{bmatrix}$
\n(iv) $\frac{2}{3}(2A - 3B)$
\n**Sol.** $= \frac{2}{3}\begin{bmatrix} 2 & 3 \ 2 & -1 \end{bmatrix} - 3\begin{bmatrix} 5 & -4 \ -2 & -1 \end{bmatrix}$
\n $= \frac{2}{3}\begin{bmatrix} 4 & 6 \ 2 & 0 \end{bmatrix} - \begin{bmatrix} 15 & -12 \ -6 & -3 \end{bmatrix}$
\n $= \frac{2}{3}\begin{bmatrix} 4-15 & 6+12 \ 2+6 & 0+3 \end{bmatrix} = \frac{2}{3}\begin{bmatrix} 11 & 18 \ 8 & 3 \end{bmatrix}$
\n $= \begin{bmatrix} \frac{-22}{3} & 12 \ \frac{16}{3} & 2 \end{bmatrix}$
\n**Q.5:** Find the value of X, if $\begin{bmatrix} 2 & 1 \ 3 & -3 \end{bmatrix} + X = \begin{bmatrix} 4 & -2 \ -1 & -2 \end{bmatrix$

Sol. 2 1
 -3 $\begin{bmatrix} 2 & 1 \\ 3 & -3 \end{bmatrix}$ + X = $\begin{bmatrix} 4 & -2 \\ -1 & -2 \end{bmatrix}$ -1 -2 $X = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ $\begin{bmatrix} 4 & -2 \\ -1 & -2 \end{bmatrix}$ $\begin{bmatrix} 4 & -2 \\ -1 & -2 \end{bmatrix}$ - $\begin{bmatrix} 2 & 1 \\ -3 \end{bmatrix}$ $3 -3$

$$
X = \begin{bmatrix} 4-2 & -2-1 \ -1-3 & -2+3 \end{bmatrix}
$$

\n
$$
X = \begin{bmatrix} 2 & -3 \ -4 & 1 \end{bmatrix}
$$
 Ans.
\nQ.6: If $A = \begin{bmatrix} 0 & 1 \ 2 & -3 \end{bmatrix}$, $B = \begin{bmatrix} -3 & 4 \ 5 & -2 \end{bmatrix}$ then
\nprove that:
\n(i) $AB \neq BA$
\n(ii) $AB \neq BA$
\n(ii) $AB \neq BA$
\n(i) $AB \neq BA$
\n(i) $AB \neq BA$
\n(ii) $AB \neq BA$
\n(i) $AB \neq BA$
\n(i) $AB \neq BA$
\n(iv) $2(10)(-11)(-2)$
\n $= \begin{bmatrix} (0)(-3)+(1)(5) & (0)(4)+(1)(-2) \ (2)(-3)+(-3)(5) & (2)(4)+(-3)(-2) \end{bmatrix}$
\n $AB = \begin{bmatrix} 0+5 & 0-2 \ -5 & 8+6 \end{bmatrix}$(i)
\n $AB = \begin{bmatrix} 5 & -2 \ -2 & 14 \end{bmatrix}$
\n $BA = \begin{bmatrix} -3 & 4 \ 5 & -2 \end{bmatrix} \begin{bmatrix} 0 & 1 \ 2 & -3 \end{bmatrix}$
\n $= \begin{bmatrix} (-3)(0)+(4)(2) & (-3)(1)+(4)(-3) \ (5)(0)+(-2)(2) & (5)(1)+(-2)(-3) \end{bmatrix}$
\n $= \begin{bmatrix} 0+8 & -3-12 \ 0-4 & 5+6 \end{bmatrix}$
\n $BA = \begin{bmatrix} 8 & -15 \ -4 & 11 \end{bmatrix}$(ii)
\nFrom (i) and (ii) Its proved that AB # BA
\nQ.7: If $A = \begin{bmatrix} 3 & 2 \ 1 & -1 \end{bmatrix}$ and $B = \begin{bmatrix} 2 & 4 \ -3 & -5 \end{bmatrix}$ then
\nverify that:
\n(ii) $(AB)^{-1} = B^{-1}A^{-1}$
\n(i) $($

Taking transport
\n
$$
(AB)^{t} = \begin{bmatrix} 0 & 2 \\ 5 & 9 \end{bmatrix}^{t}
$$
\n
$$
= \begin{bmatrix} 0 & 5 \\ 2 & 9 \end{bmatrix}
$$
\n**R.H.S** B^tA^t = $\begin{bmatrix} 2 & -3 \\ 2 & 9 \end{bmatrix}$, $A^{t} = \begin{bmatrix} 3 & 1 \\ 2 & -1 \end{bmatrix}$,
\n $B^{t}A^{t} = \begin{bmatrix} 2 & -3 \\ 4 & -5 \end{bmatrix}$, $A^{t} = \begin{bmatrix} 3 & 1 \\ 2 & -1 \end{bmatrix}$,
\n
$$
= \begin{bmatrix} (2)(3)+(-3)(2) & (2)(1)+(-3)(-1) \\ (4)(3)+(-5)(2) & (4)(1)+(-5)(-1) \end{bmatrix}
$$
\n
$$
= \begin{bmatrix} 6-6 & 2+3 \\ 12-10 & 4+5 \end{bmatrix}
$$
\n $B^{t}A^{t} = \begin{bmatrix} 0 & 5 \\ 2 & 9 \end{bmatrix}$
\nFrom (i) and (ii) its proved that $(AB)^{t} = B^{t}A^{t}$
\n**(ii)** $(AB)^{-1} = B^{-1}A^{-1}$
\n**AB** = $\begin{bmatrix} 3 & 2 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 2 & 4 \\ -3 & -5 \end{bmatrix}$
\n
$$
= \begin{bmatrix} (3)(2)+(2)(-3) & (3)(4)+(2)(-5) \\ (1)(2)+(-1)(-3) & (1)(4)+(-1)(-5) \end{bmatrix}
$$
\n
$$
= \begin{bmatrix} 6-6 & 12-10 \\ 5 & 9 \end{bmatrix}
$$
\n $(AB)^{-1} = B^{-1}A^{-1}$
\nWe already have
\n $AB = \begin{bmatrix} 0 & 2 \\ 5 & 9 \end{bmatrix}$
\n $|AB| = \begin{bmatrix} 0 & 2 \\ 5 & 9 \end{bmatrix} = (0)(9) - (2)(5)$
\n $|AB| = 0 - 10 = -10 \neq 0$ Non-singular matrix so solution possible.
\n $Adj AB = \begin{bmatrix}$

$$
B^{-1} = \frac{1}{2} \begin{bmatrix} -5 & -4 \\ +3 & 2 \end{bmatrix} \qquad \qquad(i)
$$

\nAs $A^{-1} = \frac{1}{|A|} Adj A$
\n $|A| = \begin{vmatrix} 3 & 2 \\ 1 & -1 \end{vmatrix} = (3)(-1) - (1)(2) = -3 - 2$
\n $= -5$
\n $A^{-1} = \frac{1}{-5} \begin{bmatrix} -1 & -2 \\ -1 & 3 \end{bmatrix}$
\nMultiply (i) × (ii)
\n $B^{-1} \times A^{-1} = \frac{1}{2} \begin{bmatrix} -5 & -4 \\ 3 & 2 \end{bmatrix} \times \frac{1}{-5} \begin{bmatrix} -1 & -2 \\ -1 & 3 \end{bmatrix}$
\n $= \frac{1}{2} \times \frac{1}{-5} \begin{bmatrix} -5 & -4 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} -1 & -2 \\ -1 & 3 \end{bmatrix}$
\n $= \frac{-1}{10} \begin{bmatrix} (-5)(-1) + (-1)(-4) & (-5)(-2) + (-4)(3) \\ (3)(-1) + (2)(-1) & (3)(-2) + (2)(3) \end{bmatrix}$
\n $= \frac{-1}{10} \begin{bmatrix} 5 + 4 & 10 - 12 \\ -3 - 2 & -6 + 6 \end{bmatrix}$
\n $= \frac{-1}{10} \begin{bmatrix} 9 & -2 \\ -5 & 0 \end{bmatrix} = y$

See equation *x* **and** *y* $(AB)^{-1} = B^{-1} \times A^{-1}$

IMPORTANT KEY POINTS OF CHAPTER

- A rectangular array of real numbers enclosed with brackets is said to form a matrix.
- \triangleright A matrix A is called rectangular, if the number of rows and number of columns of A are not equal.
- \triangleright A matrix A is called a square matrix, if the number of rows of A is equal to the number of columns.
- \triangleright A matrix A is called a row matrix, if A has only one row.
- \triangleright A matrix A is called a column matrix, if A has only one column.
- \triangleright A matrix A is called a null or zero matrix, if each of its entry is 0.
- \triangleright Let A be a matrix. The matrix A^t is a new matrix which is called transpose of matrix A and is obtained by interchanging rows of A into its respective columns (or columns into respective rows).
- \triangleright A square matrix A is called symmetric, if $A^t = A$.
- \triangleright Let A be a matrix. Then its negative, -A, is obtained by changing
- \triangleright The signs of all the non zero entries of A.
- \triangleright A square matrix M is said to be skew symmetric, if $M^t = -M$,
- \triangleright A square matrix M is called a diagonal matrix, if at least any one of entry of its diagonal is not zero and all non diagonal entries are zero.
- \triangleright A scalar matrix is called identity matrix, if all diagonal entries are 1.

$$
A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}
$$
 is called 3-by-3 identity matrix,

- \triangleright Let A be a matrix of order 2-by-3. Then a matrix B of same order is said to be an additive identity of matrix A, if $B + A = A$ $= A + B$
- \triangleright Let A be a matrix. A matrix B is defined as an additive inverse of A, if

$$
B + A = O = A + B
$$

 \triangleright Let A be a matrix. Another matrix B is called the identity matrix of A under multiplication, if $B \times A = A = A \times B$.

$$
\triangleright \quad \text{Let } M = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \text{ be a 2-by-2 matrix. A}
$$

real number is called determinant of M, denoted by det M such that

$$
\det \mathbf{M} = \begin{vmatrix} a \\ b \end{vmatrix} \times \begin{vmatrix} c \\ d \end{vmatrix} = ad - bc = \lambda
$$

- \triangleright A square matrix M is called singular, if the determinant of M is equal to zero.
- \triangleright A square matrix M is called non-singular, if the determinant of M is not equal to zero.

For a matrix
$$
M = \begin{bmatrix} a & b \\ c & d \end{bmatrix}
$$
, adjoint of M is defined by

defined by

$$
Adj M = \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}
$$

Eet M be a square matrix $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ J $\overline{}$ \mathbf{r} L L *c d a b* , then $\begin{bmatrix} d & -b \end{bmatrix}$ ¹ 1

$$
M^{-1} = \frac{1}{ad - bc} \begin{bmatrix} a & b \\ -c & a \end{bmatrix}
$$
 where,
det M = $\begin{vmatrix} a \\ b \end{vmatrix} \times \begin{vmatrix} c \\ d \end{vmatrix} = ad - bc = \lambda \neq 0$

- \triangleright Any two matrices A and B are called equal, if order of $A =$ order of B (ii) corresponding entries are equal
- \triangleright Any two matrices M and N are said to be conformable for addition, if order of $M =$ order of N.
- \triangleright The following laws of addition hold M + $N = N + M$ (Commutative)

$$
(M+N) + T = M + (N+T) (Associative)
$$

- \triangleright The matrices M and N are conformable for multiplication to obtain MN if the number of columns of $M =$ number of rows of N, where
- (i) $(MN) \neq NM$, in general
- (ii) $(MN)T = M(NT)$ (Associative law)
- (ii) $(MN)I = M(NI)$ (Associative law)

(iii) $M(N+T) = MN+MT$ (Distributive laws)

(iv)
$$
(N+T)M = NM + T
$$
 (Distributive laws)

- \triangleright Law of transpose of product $(AB)^t = B^t A^t$ $AA^{-1} = I = A^{-1}A$
- > The solution of a linear system of equations,

$$
ax + by = m
$$

 $cx + dy = n$

by expressing in matrix form $\overline{}$ $\overline{}$ \mathbf{r} L \vert = $\overline{}$ L $\overline{ }$ $\overline{}$ $\overline{}$ L \mathbf{r} *m x a b* is given

$$
\begin{bmatrix} c & d \parallel y \end{bmatrix} \begin{bmatrix} n \\ a & b \end{bmatrix} \begin{bmatrix} m \\ m \end{bmatrix}
$$

by
$$
\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} \begin{bmatrix} m \\ n \end{bmatrix}
$$
 if the

coefficient matrix is non-singular.

 \triangleright By using the Cramer's rule the determinental form of the solution is

$$
x = \frac{\begin{vmatrix} m & b \\ n & d \end{vmatrix}}{\begin{vmatrix} a & b \\ c & d \end{vmatrix}} \text{ and } y = \frac{\begin{vmatrix} a & m \\ c & n \end{vmatrix}}{\begin{vmatrix} a & b \\ c & d \end{vmatrix}}
$$

Where $\begin{vmatrix} a & b \\ c & d \end{vmatrix} \neq 0$

10. A square matrix M is called to be symmetric matrix if:

(a)
$$
M^t = \overline{M}
$$

\n(b) $M^t = \frac{1}{M}$
\n(c) $M^t = -M$
\n(d) $M^t = M$

ANSWERS

